On the reflected random walk on R +
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 350-368.

Let ρ be a borelian probability measure on R having a moment of order 1 and a drift λ= R ydρ(y)<0. Consider the random walk on R + starting at xR + and defined for any nN by

X 0 =xX n+1 =|X n +Y n+1 |
where (Y n ) is an iid sequence of law ρ. We denote P the Markov operator associated to this random walk and, for any borelian bounded function f on R + , we call Poisson’s equation the equation f=g-Pg with unknown function g. In this paper, we prove that under a regularity condition on ρ and f, there is a solution to Poisson’s equation converging to 0 at infinity. Then, we use this result to prove the functional central limit theorem and it’s almost-sure version.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2017012
Classification : 60J10
Mots-clés : Markov chains, Poisson’s equation, Gordin’s method, renewal theorem, random walk on the half line
Boyer, Jean−Baptiste 1

1 IMB, Université de Bordeaux / MODAL’X, Université Paris-Ouest, Nanterre, France
@article{PS_2017__21__350_0,
     author = {Boyer, Jean\ensuremath{-}Baptiste},
     title = {On the reflected random walk on $R_{+}$},
     journal = {ESAIM: Probability and Statistics},
     pages = {350--368},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2017012},
     mrnumber = {3743918},
     zbl = {1393.60046},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2017012/}
}
TY  - JOUR
AU  - Boyer, Jean−Baptiste
TI  - On the reflected random walk on $R_{+}$
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 350
EP  - 368
VL  - 21
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2017012/
DO  - 10.1051/ps/2017012
LA  - en
ID  - PS_2017__21__350_0
ER  - 
%0 Journal Article
%A Boyer, Jean−Baptiste
%T On the reflected random walk on $R_{+}$
%J ESAIM: Probability and Statistics
%D 2017
%P 350-368
%V 21
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2017012/
%R 10.1051/ps/2017012
%G en
%F PS_2017__21__350_0
Boyer, Jean−Baptiste. On the reflected random walk on $R_{+}$. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 350-368. doi : 10.1051/ps/2017012. http://archive.numdam.org/articles/10.1051/ps/2017012/

F. Chaabane, Version forte du théorème de la limite centrale fonctionnel pour les martingales. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 195–198. | MR | Zbl

W. Feller, An introduction to probability theory and its applications. Vol. II. 2nd edition. John Wiley and Sons, Inc., New York London Sydney (1971). | MR | Zbl

P.W. Glynn and S.P. Meyn, A Liapounov bound for solutions of the Poisson equation. Ann. Probab. 24 (1996) 916–931. | DOI | MR | Zbl

P. Hall and C.C. Heyde, Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). | MR | Zbl

U. Krengel,Ergodic theorems. With a supplement by Antoine Brunel. Vol. 6 of de Gruyter Studies in Mathematics. Walter de Gruyter and Co., Berlin (1985). | MR | Zbl

J.P. Leguesdron, Marche aléatoire sur le semi-groupe des contractions de 𝐑 d . Cas de la marche aléatoire sur 𝐑 + avec choc élastique en zéro. Ann. Inst. Henri Poincaré Probab. Statist. 25 (1989) 483–502. | Numdam | MR | Zbl

S.P. Meyn and R.L. Tweedie,Markov chains and stochastic stability. Communications and Control Engineering Series. Springer Verlag London Ltd., London (1993). | MR | Zbl

M. Peigné and W. Woess, On recurrence of reflected random walk on the half-line. With an appendix on results of Martin Benda. Preprint (2006). | arXiv

F. Spitzer, Principles of random walk. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J. Toronto London (1964). | MR | Zbl

Cité par Sources :