Let be a borelian probability measure on having a moment of order and a drift . Consider the random walk on starting at and defined for any by
Accepté le :
DOI : 10.1051/ps/2017012
Mots-clés : Markov chains, Poisson’s equation, Gordin’s method, renewal theorem, random walk on the half line
@article{PS_2017__21__350_0, author = {Boyer, Jean\ensuremath{-}Baptiste}, title = {On the reflected random walk on $R_{+}$}, journal = {ESAIM: Probability and Statistics}, pages = {350--368}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017012}, mrnumber = {3743918}, zbl = {1393.60046}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2017012/} }
Boyer, Jean−Baptiste. On the reflected random walk on $R_{+}$. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 350-368. doi : 10.1051/ps/2017012. http://archive.numdam.org/articles/10.1051/ps/2017012/
Version forte du théorème de la limite centrale fonctionnel pour les martingales. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 195–198. | MR | Zbl
,W. Feller, An introduction to probability theory and its applications. Vol. II. 2nd edition. John Wiley and Sons, Inc., New York London Sydney (1971). | MR | Zbl
A Liapounov bound for solutions of the Poisson equation. Ann. Probab. 24 (1996) 916–931. | DOI | MR | Zbl
and ,P. Hall and C.C. Heyde, Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). | MR | Zbl
U. Krengel,Ergodic theorems. With a supplement by Antoine Brunel. Vol. 6 of de Gruyter Studies in Mathematics. Walter de Gruyter and Co., Berlin (1985). | MR | Zbl
Marche aléatoire sur le semi-groupe des contractions de . Cas de la marche aléatoire sur avec choc élastique en zéro. Ann. Inst. Henri Poincaré Probab. Statist. 25 (1989) 483–502. | Numdam | MR | Zbl
,S.P. Meyn and R.L. Tweedie,Markov chains and stochastic stability. Communications and Control Engineering Series. Springer Verlag London Ltd., London (1993). | MR | Zbl
M. Peigné and W. Woess, On recurrence of reflected random walk on the half-line. With an appendix on results of Martin Benda. Preprint (2006). | arXiv
F. Spitzer, Principles of random walk. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N.J. Toronto London (1964). | MR | Zbl
Cité par Sources :