Consistency of a likelihood estimator for stochastic damping Hamiltonian systems. Totally observed data
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 1-36.

In this work we prove the consistency of an estimator for a stochastic damping Hamiltonian system considering that both position and velocity are observed. Next we perform some simulations, including the case when only position is available, to see how the estimators work numerically and then compare the obtained results with those obtained by other authors.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2018004
Classification : 62M05, 60G10
Mots-clés : Two dimensional hypoelliptic diffusion, stochastic damping Hamiltonian systems, likelihood estimator, consistency, discretely observed data
León, José Rafael 1 ; Rodríguez, Luis-Ángel 1 ; Ruggiero, Roberto 1

1
@article{PS_2019__23__1_0,
     author = {Le\'on, Jos\'e Rafael and Rodr{\'\i}guez, Luis-\'Angel and Ruggiero, Roberto},
     title = {Consistency of a likelihood estimator for stochastic damping {Hamiltonian} systems. {Totally} observed data},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--36},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2018004},
     mrnumber = {3921880},
     zbl = {1415.62063},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2018004/}
}
TY  - JOUR
AU  - León, José Rafael
AU  - Rodríguez, Luis-Ángel
AU  - Ruggiero, Roberto
TI  - Consistency of a likelihood estimator for stochastic damping Hamiltonian systems. Totally observed data
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 1
EP  - 36
VL  - 23
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2018004/
DO  - 10.1051/ps/2018004
LA  - en
ID  - PS_2019__23__1_0
ER  - 
%0 Journal Article
%A León, José Rafael
%A Rodríguez, Luis-Ángel
%A Ruggiero, Roberto
%T Consistency of a likelihood estimator for stochastic damping Hamiltonian systems. Totally observed data
%J ESAIM: Probability and Statistics
%D 2019
%P 1-36
%V 23
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2018004/
%R 10.1051/ps/2018004
%G en
%F PS_2019__23__1_0
León, José Rafael; Rodríguez, Luis-Ángel; Ruggiero, Roberto. Consistency of a likelihood estimator for stochastic damping Hamiltonian systems. Totally observed data. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 1-36. doi : 10.1051/ps/2018004. http://archive.numdam.org/articles/10.1051/ps/2018004/

[1] L. Abbaoui and A. Bendjeddou, Exact stationary solutions for a class of nonlinear oscillators. Adv. Appl. Stat. 1 (2001) 99–106. | MR | Zbl

[2] P. Billingsley, Convergence of Probability Measures. Wiley, New York (1968). | MR | Zbl

[3] P. Cattiaux, J. León and C. Prieur, Estimation for stochastic damping hamiltonian systems under partial observations – I. Invariant density. Stoch. Process Appl. 124 (2014) 1236–1260. | DOI | MR | Zbl

[4] P. Cattiaux, J. León and C. Prieur, Estimation for stochastic damping hamiltonian systems under partial observations – II Drift Term. ALEA 11 (2014) 1236–1260. | MR | Zbl

[5] V. Genon-Catalot, Maximum contrast estimation for diffusion processes from discrete observations. Statistics 21 (1990) 99–116. | DOI | MR | Zbl

[6] V. Genon-Catalot, T. Jeantheau and C. Laredo, Parameter estimation for discretely observed stochastic volatility models. Bernoulli 5 (1999) 855–872. | DOI | MR | Zbl

[7] V. Genon-Catalot, T. Jeantheau and C. Laredo, Stochastic volatility models as hidden markov models and statistical applications. Bernoulli 6 (2000) 1051–1079. | DOI | MR | Zbl

[8] M. Gitterman, The Noisy Oscillator: The First Hundred Years, From Einstein Until Now, 1st edn. World Scientific Publishing Co. Pte. Ltd. (2005). | DOI | MR | Zbl

[9] T. Lelièvre, M. Rousset and G. Stoltz, Free Energy Computations a Mathematical Perspective. World Scientific (2010). | DOI | MR | Zbl

[10] J.R. León and A. Samson, Hypoelliptic Stochastic Fitzhugh-Nagumo Neuronal Model: Mixing, Up-Crossing and Estimation of the Spike Rate. Ann. Appl. Probab. 28 (2018) 2243–2274. | MR | Zbl

[11] B. Lindner and L. Schimansky-Geier, Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance. Phys. Rev. E 60 (1999) 7270–7276. | DOI

[12] J. Mathews and K. Fink, Numerical Methods Using MATLAB, 1st edn. Prentice Hall (1999).

[13] J. Nicolau, Nonparametric Estimation of second-order stochastic differential equations. Econ. Theory 23 (2007) 880–898. | DOI | MR | Zbl

[14] T. Ozaki, Statistical identification of nonlinear random vibration systems. J. Appl. Mech. 111 (1989) 186–191. | DOI | MR | Zbl

[15] T. Ozaki, A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Stat. Sin. 2 (1992) 113–135. | MR | Zbl

[16] Y. Pokern, A. Stuart and P. Wiberg, Parameter estimation for partially observed hypoelliptic diffusions. J. R. Stat. Soc. 71 (2009) 49–73. | DOI | MR | Zbl

[17] J.B. Roberts and P.D. Spanos, Random Vibration and Statistical Linearization. Dover (2003). | MR | Zbl

[18] A. Samson and M. Thieullen, Contrast estimator for completely or partially observed hypoelliptic diffusion. Stoch. Process. Appl. 122 (2012) 2521–2552. | DOI | MR | Zbl

[19] D. Talay, Stochastic hamiltonian systems:exponential convergence to the invariant measure, and discretization by the implicit euler scheme. Markov Process. Relat. Fields 8 (2002) 1–36. | MR | Zbl

[20] A. Wald, Note on the consistency of the maximum likelihood estimate. Ann. Math. Stat. 20 (1949) 595–601. | DOI | MR | Zbl

[21] L. Wu, Large and moderate deviations and exponential convergence for stochastic damping hamiltonian systems. Stoch. Process. Appl. 91 (2001) 205–238. | DOI | MR | Zbl

Cité par Sources :