Tempered fractional multistable motion and tempered multifractional stable motion
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 37-67.

This work defines two classes of processes, that we term tempered fractional multistable motion and tempered multifractional stable motion. They are extensions of fractional multistable motion and multifractional stable motion, respectively, obtained by adding an exponential tempering to the integrands. We investigate certain basic features of these processes, including scaling property, tail probabilities, absolute moment, sample path properties, pointwise Hölder exponent, Hölder continuity of quasi norm, (strong) localisability and semi-long-range dependence structure. These processes may provide useful models for data that exhibit both dependence and varying local regularity/intensity of jumps.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2018012
Classification : 60G52, 60G18, 60G22, 60G17, 60E07
Mots-clés : Stable processes, multistable processes, multifractional processes, sample paths, long-range dependence, localisability
Fan, Xiequan 1 ; Lévy Véhel, Jacques 1

1
@article{PS_2019__23__37_0,
     author = {Fan, Xiequan and L\'evy V\'ehel, Jacques},
     title = {Tempered fractional multistable motion and tempered multifractional stable motion},
     journal = {ESAIM: Probability and Statistics},
     pages = {37--67},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2018012},
     mrnumber = {3921881},
     zbl = {1411.60072},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2018012/}
}
TY  - JOUR
AU  - Fan, Xiequan
AU  - Lévy Véhel, Jacques
TI  - Tempered fractional multistable motion and tempered multifractional stable motion
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 37
EP  - 67
VL  - 23
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2018012/
DO  - 10.1051/ps/2018012
LA  - en
ID  - PS_2019__23__37_0
ER  - 
%0 Journal Article
%A Fan, Xiequan
%A Lévy Véhel, Jacques
%T Tempered fractional multistable motion and tempered multifractional stable motion
%J ESAIM: Probability and Statistics
%D 2019
%P 37-67
%V 23
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2018012/
%R 10.1051/ps/2018012
%G en
%F PS_2019__23__37_0
Fan, Xiequan; Lévy Véhel, Jacques. Tempered fractional multistable motion and tempered multifractional stable motion. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 37-67. doi : 10.1051/ps/2018012. http://archive.numdam.org/articles/10.1051/ps/2018012/

[1] A. Astrauskas, J.B. Lévy and M.S. Taqqu, The asymptotic depedence structure of the linear frational Lévy motion. Lith. Math. J. 31 (1991) 1–19. | DOI | MR | Zbl

[2] A. Ayache and J. Hamonier, Linear multifractional stable motion: fine path properties. Rev. Mat. Iberoam. 30 (2014) 1301–1354. | DOI | MR | Zbl

[3] K.J. Falconer, Tangent fields and the local structure of random fields. J. Theor. Probab. 15 (2002) 731–750. | DOI | MR | Zbl

[4] K.J. Falconer, The local structure of random processes. J. Lond. Math. Soc. 67 (2003) 657–672. | DOI | MR | Zbl

[5] K.J. Falconer and J. Lévy Véhel Multifractional, multistable, and other processes with prescribed local form. J. Theor. Probab. 22 (2009) 375–401. | DOI | MR | Zbl

[6] K.J. Falconer and L. Liu, Multistable Processes and Localisability. Stoch. Models 28 (2012) 503–526. | DOI | MR | Zbl

[7] K.J. Falconer, R. Le Guével and J. Lévy Véhel Localizable moving average symmetric stable and multistable processes. Stoch. Models 25 (2009) 648–672. | DOI | MR | Zbl

[8] R. Le Guével and J. Lévy Véhel Incremental moments and Hölder exponents of multifractional multistable processes. ESAIM: PS 17 (2013) 135–178. | DOI | Numdam | MR | Zbl

[9] M.M. Meerschaert and F. Sabzikar, Tempered fractional stable motion. J. Theoret. Probab. 29 (2016) 681–706. | DOI | MR | Zbl

[10] J. Nolan, Bibliography on stable distributions, processes and related topics. Available at: http://academic2.american.edu/jpnolan/stable/StableBibliography.pdf (2010).

[11] G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). | MR | Zbl

[12] S. Stoev and M.S. Taqqu, Stochastic properties of the linear multifractional stable motion. Adv. Appl. Probab. 36 (2004) 1085–1115. | DOI | MR | Zbl

[13] S. Stoev and M.S. Taqqu, Path properties of the linear multifractional stable motion. Fractals 13 (2005) 157–178. | DOI | MR | Zbl

[14] N.W. Watkins, D. Credgington, B. Hnat, S.C. Chapman, M.P. Freeman and J. Greenhough, Towards synthesis of solar wind and geomagnetic scaling exponents: a fractional Lévy motion model. Space Sci. Rev. 121 (2005) 271–284. | DOI

Cité par Sources :