In this paper, we address the estimation of multivariate value-at-risk (VaR) and tail value-at-risk (TVaR). We recall definitions for the bivariate lower and upper orthant VaR and bivariate lower and upper orthant TVaR, presented in Cossette et al. [Eur. Actuar. J. 3 (2013) 321–357 or Methodol. Comput. Appl. Probab. (2014) 1–22]. Here, we present estimators for both these measures extended to an arbitrary dimension d ≥ 2 and establish the consistency of our estimator for the lower and upper orthant TVaR in any dimension. We demonstrate these results by providing numerical examples that compare our estimator to theoretical results for both simulated and real data.
Mots-clés : Multivariate estimators, risk measures, copulas.
@article{PS_2018__22__163_0, author = {Beck, Nicholas and Mailhot, M\'elina}, title = {A consistent estimator to the orthant-based tail value-at-risk}, journal = {ESAIM: Probability and Statistics}, pages = {163--177}, publisher = {EDP-Sciences}, volume = {22}, year = {2018}, doi = {10.1051/ps/2018015}, mrnumber = {3877330}, zbl = {1409.62206}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2018015/} }
TY - JOUR AU - Beck, Nicholas AU - Mailhot, Mélina TI - A consistent estimator to the orthant-based tail value-at-risk JO - ESAIM: Probability and Statistics PY - 2018 SP - 163 EP - 177 VL - 22 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2018015/ DO - 10.1051/ps/2018015 LA - en ID - PS_2018__22__163_0 ER -
%0 Journal Article %A Beck, Nicholas %A Mailhot, Mélina %T A consistent estimator to the orthant-based tail value-at-risk %J ESAIM: Probability and Statistics %D 2018 %P 163-177 %V 22 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2018015/ %R 10.1051/ps/2018015 %G en %F PS_2018__22__163_0
Beck, Nicholas; Mailhot, Mélina. A consistent estimator to the orthant-based tail value-at-risk. ESAIM: Probability and Statistics, Tome 22 (2018), pp. 163-177. doi : 10.1051/ps/2018015. http://archive.numdam.org/articles/10.1051/ps/2018015/
[1] Coherent measures of risk. Math. Finance 9 (1999) 203–228. | DOI | MR | Zbl
, , and ,[2] Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling. Monte Carlo Method. Appl. 15 (2009) 173–210. | DOI | MR | Zbl
, and ,[3] Copula conditional tail expectation for multivariate financial risks. Arab J Math. Seci. 24 (2018) 82–100. | MR | Zbl
, and ,[4] Bivariate lower and upper orthant value-at-risk. Eur. Actuar. J. 3 (2013) 321–357. | DOI | MR | Zbl
, , and ,[5] Vector-valued tail value-at-risk and capital allocation. Methodol. Comput. Appl. Probab. 18 (2016) 653–674. | DOI | MR | Zbl
, , and ,[6] On multivariate extensions of value-at-risk. J. Multivar. Anal. 119 (2013) 32–46. | DOI | MR | Zbl
and ,[7] Plug-in estimation of general level sets. Aust. N. Z. J. Stat. 48 (2006) 7–19. | DOI | MR | Zbl
, and ,[8] Estimating level sets of a distribution function using a plug-in method: a multidimensional extension. Preprint (2012). | arXiv
and ,[9] Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory. ESAIM: Probab. Stat. 17 (2013) 236–256. | DOI | Numdam | MR | Zbl
, , and ,[10] Bounds for functions of multivariate risks. J. Multivar. Anal. 97 (2006) 526–547. | DOI | MR | Zbl
and ,[11] European Commission, Solvency II (2014), http://ec.europa.eu/finance/insurance/solvency/index_en.htm.
[12] Understanding relationships using copulas. North Am. Actuar. J. 2 (1998) 1–25. | DOI | MR | Zbl
and ,[13] Vector-valued coherent risk measures. Finance Stoch. 8 (2004) 531–552. | DOI | MR | Zbl
, and ,[14] Vector-valued coherent risk measure processes. Int. J. Theor. Appl. Finance 17 (2014) 1450011. | DOI | MR | Zbl
and ,[15] Multivariate TVaR-based risk decomposition for vector-valued portfolios. Risks 4 (2016) 33. | DOI
and ,[16] On dependence consistency of covar and some other systemic risk measures. Stat. Risk Model. 31 (2014) 49–77. | DOI | MR | Zbl
and ,[17] On rank correlation measures for non-continuous random variables. J. Multivar. Anal. 98 (2007) 544–567. | DOI | MR | Zbl
,[18] OSFI, Minimum capital test for federally regulated property and casualty insurance companies. (2015), http://www.osfi-bsif.gc.ca/Eng/fi-if/rg-ro/gdn-ort/gl-ld/Pages/mct2015.aspx.
[19] Optimization of conditional value-at-risk (2000). | MR | Zbl
and ,[20] Conditional value-at-risk for general loss distributions. J. Bank. Finance 26 (2002) 1443–1471. | DOI
and ,Cité par Sources :