Maximum likelihood estimation in hidden Markov models with inhomogeneous noise
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 492-523.

We consider parameter estimation in finite hidden state space Markov models with time-dependent inhomogeneous noise, where the inhomogeneity vanishes sufficiently fast. Based on the concept of asymptotic mean stationary processes we prove that the maximum likelihood and a quasi-maximum likelihood estimator (QMLE) are strongly consistent. The computation of the QMLE ignores the inhomogeneity, hence, is much simpler and robust. The theory is motivated by an example from biophysics and applied to a Poisson- and linear Gaussian model.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2018017
Classification : 62F12, 62M09
Mots-clés : Inhomogeneous hidden Markov models, quasi-maximum likelihood estimation, strong consistency, robustness, asymptotic mean stationarity
Diehn, Manuel 1 ; Munk, Axel 1 ; Rudolf, Daniel 1

1
@article{PS_2019__23__492_0,
     author = {Diehn, Manuel and Munk, Axel and Rudolf, Daniel},
     title = {Maximum likelihood estimation in hidden {Markov} models with inhomogeneous noise},
     journal = {ESAIM: Probability and Statistics},
     pages = {492--523},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2018017},
     mrnumber = {3989601},
     zbl = {1422.62099},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2018017/}
}
TY  - JOUR
AU  - Diehn, Manuel
AU  - Munk, Axel
AU  - Rudolf, Daniel
TI  - Maximum likelihood estimation in hidden Markov models with inhomogeneous noise
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 492
EP  - 523
VL  - 23
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2018017/
DO  - 10.1051/ps/2018017
LA  - en
ID  - PS_2019__23__492_0
ER  - 
%0 Journal Article
%A Diehn, Manuel
%A Munk, Axel
%A Rudolf, Daniel
%T Maximum likelihood estimation in hidden Markov models with inhomogeneous noise
%J ESAIM: Probability and Statistics
%D 2019
%P 492-523
%V 23
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2018017/
%R 10.1051/ps/2018017
%G en
%F PS_2019__23__492_0
Diehn, Manuel; Munk, Axel; Rudolf, Daniel. Maximum likelihood estimation in hidden Markov models with inhomogeneous noise. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 492-523. doi : 10.1051/ps/2018017. http://archive.numdam.org/articles/10.1051/ps/2018017/

[1] P. Ailliot and F. Pène, Consistency of the maximum likelihood estimate for non-homogeneous Markov-switching models. ESAIM: PS 19 (2015) 268–292. | DOI | Numdam | MR | Zbl

[2] A.R. Barron, The strong ergodic theorem for densities: generalized Shannon-McMillan-Breiman theorem. Ann. Probab. 13 (1985) 1292–1303. | DOI | MR | Zbl

[3] L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist. 37 (1966) 1554–1563. | DOI | MR | Zbl

[4] L.E. Baum, T. Petrie, G. Soules and N. Weiss, A maximization technique occuring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41 (1970) 164–171. | DOI | MR | Zbl

[5] P.J. Bickel, Y. Ritov and T. Rydén, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Ann. Statist. 26 (1998) 1614–1635. | DOI | MR | Zbl

[6] P. Billingsley, Convergence of Probability Measures, 2nd edition. Wiley-, New York (1999). | DOI | MR | Zbl

[7] R. Briones, C. Weichbrodt, L. Paltrinieri, I. Mey, S. Villinger, K. Giller, A. Lange, M. Zweckstetter, C. Griesinger, S. Becker, C. Steinem and B.L. De Groot, Voltage dependence of conformational dynamics and subconducting states of VDAC-1. Biophys. J. 111 (2016) 1223–1234. | DOI

[8] C. Danelon, E.M. Nestorovich, M. Winterhalter, M. Ceccarelli and S.M. Bezrukov, Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys. J. 90 (2006) 1617–1627. | DOI

[9] R. Douc and C. Matias, Asymptotics of the maximum likelihood estimator for general hidden Markov models. Bernoulli 7 (2001) 381–420. | DOI | MR | Zbl

[10] R. Douc, E. Moulines and T. Ryden, Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Statist. 32 (2004) 2254–2304. | DOI | MR | Zbl

[11] R. Douc, E. Moulines, J. Olsson and R. Van HandelConsistency of the maximum likelihood estimator for general hidden Markov models. Ann. Statist. 39 (2011) 474–513. | DOI | MR | Zbl

[12] V. Genon-Catalot and C. Laredo, Leroux’s method for general hidden Markov models. Stoch. Process. Their Appl. 116 (2006) 222–243. | DOI | MR | Zbl

[13] R.M. Gray and J.C. Kieffer, Asymptotically mean stationary measures. Ann. Probab. 8 (1980) 962–973. | MR | Zbl

[14] R.M. Gray, Probability, Random Processes, and Ergodic Properties, 2nd edition. Springer Publishing Company, Incorporated, New York (2009). | DOI | MR | Zbl

[15] R.D.H. Heymans and J.R. Magnus, Consistent maximum-likelihood estimation with dependent observations: the general (non-normal) case. J. Econom. 32 (1986) 253–285. | DOI | MR | Zbl

[16] T. HotzO.M. Schütte, H. Sieling, T. Polupanow, U. Diederichsen, C. Steinem and A. Munk, Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans. Nanobiosci. 12 (2013) 376–386. | DOI

[17] J.L. Jensen, Asymptotic normality of M-estimators in nonhomogeneous hidden Markov models. J. Appl. Probab. 48A (2011) 295–306. | DOI | MR | Zbl

[18] F. Legland and L. Mevel, Asymptotic properties of the MLE in hidden Markov models, in 1997 European Control Conference (ECC)  (1997) 3440–3445. | DOI

[19] B.G. Leroux, Maximum-likelihood estimation for hidden Markov models. Stoch. Process. Their Appl. 40 (1992) 127–143. | DOI | MR | Zbl

[20] E. Neher and B. Sakmann, The patch clamp technique. Sci. Am. 266 (1992) 44–51. | DOI

[21] D. Pouzo, Z. Psaradakis and M. Sola, Maximum likelihood estimation in possibly misspecified dynamic models with time inhomogeneous Markov regimes, SSRN Scholarly. Social Science Research Network, Rochester, NY (2016) 2887771.

[22] F. Qin, A. Auerbach and F. Sachs, Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys. J. 79 (2000) 1928–1944. | DOI

[23] O.W. Rechard, Invariant measures for many-one transformations. Duke Math. J. 23 (1956) 477–488. | DOI | MR | Zbl

[24] I. Siekmann, L.E. Wagner, D. Yule, C. Fox, D. Bryant, E.J. Crampin and J. Sneyd, MCMC estimation of Markov models for ion channels. Biophys. J. 100 (2011) 1919–1929. | DOI

[25] A.M. Vandongen, A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels. Biophys. J. 70 (1996) 1303–1315. | DOI

[26] L. Venkataramanan and F.J. Sigworth, Applying hidden Markov models to the analysis of single ion channel activity. Biophys. J. 82 (2002) 1930–1942. | DOI

[27] A. Wald, Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20 (1949) 595–601. | DOI | MR | Zbl

Cité par Sources :