The traditional quantification of free motions on Euclidean spaces into the Laplacian is revisited as a complex intertwining obtained through Doob transforms with respect to complex eigenvectors. This approach can be applied to free motions on finitely generated discrete Abelian groups: ℤ$$, with m ∈ ℕ, finite tori and their products. It leads to a proposition of Markov quantification. It is a first attempt to give a probability-oriented interpretation of exp(ξL), when L is a (finite) Markov generator and ξ is a complex number of modulus 1.
Accepté le :
DOI : 10.1051/ps/2018020
Mots-clés : Quantification, free motion, Markov process, Doob transform, intertwining
@article{PS_2019__23__409_0, author = {Miclo, Laurent}, title = {Complex intertwinings and quantification of discrete free motions}, journal = {ESAIM: Probability and Statistics}, pages = {409--429}, publisher = {EDP-Sciences}, volume = {23}, year = {2019}, doi = {10.1051/ps/2018020}, zbl = {1420.81011}, mrnumber = {3980426}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2018020/} }
TY - JOUR AU - Miclo, Laurent TI - Complex intertwinings and quantification of discrete free motions JO - ESAIM: Probability and Statistics PY - 2019 SP - 409 EP - 429 VL - 23 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2018020/ DO - 10.1051/ps/2018020 LA - en ID - PS_2019__23__409_0 ER -
Miclo, Laurent. Complex intertwinings and quantification of discrete free motions. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 409-429. doi : 10.1051/ps/2018020. http://archive.numdam.org/articles/10.1051/ps/2018020/
[1] Analysis and geometry of Markov diffusion operators. Vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham (2014). | DOI | MR | Zbl
, and ,[2] Continuum descriptions for the dynamics in discrete lattices: derivation and justification, in Analysis, Modeling and Simulation of Multiscale Problems. Springer, Berlin (2006) 435–466. | MR
, and ,[3] Propagación y control de vibraciones en medios discretos y continuos. Ph.D. thesis, Universidad Complutense de Madrid, Departamento de Matemática Aplicada, Universidad Complutense de Madrid (2002).
,[4] Wigner measures in the discrete setting: high-frequency analysis of sampling and reconstruction operators. SIAM J. Math. Anal. 36 (2004) 347–383. | DOI | MR | Zbl
,[5] Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner-Husimi transforms. Arch. Ration. Mech. Anal. 181 (2006) 401–448. | DOI | MR | Zbl
,[6] Semiclassical Analysis. Vol. 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2012). | MR | Zbl
,Cité par Sources :