Beckner inequalities for Moebius measures on spheres
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 552-566.

In this paper, we consider the Moebius measures μ$$$$ indexed by dimension n and |x| < 1 on the unit sphere S$$ in ℝ$$ (n ≥ 3), and provide a precise two-sided estimate on the order of the Beckner inequality constant with exponent p ∈ [1, 2) in the three parameters. As special cases for p = 1 and p tending to 2, our results cover those in Barthe et al. [Forum Math. (submitted for publication)] for n ≥ 3 and explore an interesting phenomenon.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2018025
Classification : 60E15, 39B62, 26Dxx
Mots-clés : Moebius measures, unit spheres, Beckner inequalities, Poincaré inequalities, logarithmic Sobolev inequalities
Yao, Nian 1 ; Zhang, Zhengliang 1

1
@article{PS_2019__23__552_0,
     author = {Yao, Nian and Zhang, Zhengliang},
     title = {Beckner inequalities for {Moebius} measures on spheres},
     journal = {ESAIM: Probability and Statistics},
     pages = {552--566},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2018025},
     mrnumber = {3990653},
     zbl = {1481.60044},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2018025/}
}
TY  - JOUR
AU  - Yao, Nian
AU  - Zhang, Zhengliang
TI  - Beckner inequalities for Moebius measures on spheres
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 552
EP  - 566
VL  - 23
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2018025/
DO  - 10.1051/ps/2018025
LA  - en
ID  - PS_2019__23__552_0
ER  - 
%0 Journal Article
%A Yao, Nian
%A Zhang, Zhengliang
%T Beckner inequalities for Moebius measures on spheres
%J ESAIM: Probability and Statistics
%D 2019
%P 552-566
%V 23
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2018025/
%R 10.1051/ps/2018025
%G en
%F PS_2019__23__552_0
Yao, Nian; Zhang, Zhengliang. Beckner inequalities for Moebius measures on spheres. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 552-566. doi : 10.1051/ps/2018025. http://archive.numdam.org/articles/10.1051/ps/2018025/

[1] D. Bakry and M. Emery, Diffusions hypercontractives. Vol. 1123 of Lect. Notes Math. Springer (1985) 177–206. | DOI | Numdam | MR | Zbl

[2] D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators. Vol. 348 of Grundlehren Math. Wiss. (Springer, 2014). | DOI | MR | Zbl

[3] F. Barthe and C. Roberto, Sobolev inequalities for probabilty measures on the real line. Stud. Math. 159 (2003) 481–497. | DOI | MR | Zbl

[4] F. Barthe, Y.-T. Ma and Z. Zhang, Logarithmic Sobolev inequalities for harmonic measures on spheres. J. Math. Pures Appl. 102 (2014) 234–248. | DOI | MR | Zbl

[5] F. Barthe, Y.-T. Ma and Z. Zhang, Logarithmic Sobolev inequalities for Moebius measures on spheres. J. Math. Pures Appl. 102 (2014) 234–248. | DOI | MR | Zbl

[6] W. Beckner, A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 105 (1989) 397–400. | MR | Zbl

[7] J. Du, L.-Z. Lei and Y.-T. Ma, Sobolev inequalities for harmonic measures on spheres. Stat. Prob. Lett. 100 (2015) 104–114. | DOI | MR | Zbl

[8] M. Ledoux, The Concentration of Measure Phenomenon, in Vol. 89 of Math. Surveys Monographs. Am. Math. Soc., Providence, RI (2001). | MR | Zbl

[9] L. Lei, Y. Ma and D. Xue, Sobolev inequalities for Moebius measures on the unit circle. J. Math. (PRC) 38 (2018) 813–821. | Zbl

[10] Y.-T. Ma and Z.-L. Zhang, Logarithmic Sobolev and Poincaré inequalities for the circular Cauchy distribution. Electr. Commun. Prob. 19 (2014) 1–9. | MR | Zbl

[11] G. Schechtman and M. Schmuckenschläger, A concentration inequality for harmonic measures on the sphere, Geometric aspects of funct. analysis (Israel, 1992–1994). Oper. Theory Adv. Appl. 77 (1995) 255–273. | MR | Zbl

[12] F.-Y. Wang, Functional inequalities, Markov semigroups and spectral theory. Science Press, Beijing (2005).

[13] Z.-L. Zhang and Y. Miao, An equivalent condition between Poincaré inequality and T2 transportation cost inequality. Acta Appl. Math. 110 (2012) 39–46. | DOI | MR | Zbl

Cité par Sources :