For the branching random walk drifting to −∞ we study large deviations-type estimates for the first passage time. We prove the corresponding law of large numbers and the central limit theorem.
Accepté le :
DOI : 10.1051/ps/2019006
Mots-clés : Branching random walk, random walk, large deviations, first passage time
@article{PS_2019__23__823_0, author = {Buraczewski, Dariusz and Ma\'slanka, Mariusz}, title = {Large deviation estimates for branching random walks}, journal = {ESAIM: Probability and Statistics}, pages = {823--840}, publisher = {EDP-Sciences}, volume = {23}, year = {2019}, doi = {10.1051/ps/2019006}, mrnumber = {4045541}, zbl = {1506.60038}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2019006/} }
TY - JOUR AU - Buraczewski, Dariusz AU - Maślanka, Mariusz TI - Large deviation estimates for branching random walks JO - ESAIM: Probability and Statistics PY - 2019 SP - 823 EP - 840 VL - 23 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2019006/ DO - 10.1051/ps/2019006 LA - en ID - PS_2019__23__823_0 ER -
%0 Journal Article %A Buraczewski, Dariusz %A Maślanka, Mariusz %T Large deviation estimates for branching random walks %J ESAIM: Probability and Statistics %D 2019 %P 823-840 %V 23 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2019006/ %R 10.1051/ps/2019006 %G en %F PS_2019__23__823_0
Buraczewski, Dariusz; Maślanka, Mariusz. Large deviation estimates for branching random walks. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 823-840. doi : 10.1051/ps/2019006. http://archive.numdam.org/articles/10.1051/ps/2019006/
[1] Minima in branching random walks. Ann. Probab. 37 (2009) 1044–1079. | DOI | MR | Zbl
and ,[2] On the maximum of a subcritical branching process in a random environment. Stochastic Process. Appl. 93 (2001) 87–107. | DOI | MR | Zbl
,[3] High level subcritical branching processes in a random environment. Proc. Steklov Inst. Math. 282 (2013) 4–14. | DOI | MR | Zbl
,[4] Convergence in law of the minimum of a branching random walk. Ann. Probab. 41 (2013) 1362–1426. | DOI | MR | Zbl
,[5] Rao On deviations of the sample mean. Ann. Math. Statist. 31 (1960) 1015–1027. | DOI | MR | Zbl
and ,[6] The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Probab. 8 (1976) 446–459. | DOI | MR | Zbl
,[7] Large deviation estimates for exceedance times of perpetuity sequences and their dual processes. Ann. Probab. 44 (2016) 3688–3739. | DOI | MR | Zbl
, , and ,[8] Pointwise estimates for first passage times of perpetuity sequences. Stochastic Process. Appl. 128 (2018) 2923–2951. | DOI | MR | Zbl
, and ,[9] Precise tail asymptotics of fixed points of the smoothing transform with general weights. Bernoulli 21 (2015) 489–504. | DOI | MR | Zbl
, and ,[10] Large deviation estimates for branching process in random environment. Electron. J. Probab. 23 (2018) 26 pp. | DOI
and ,[11] Precise large deviations for the first passage time of random walk with negative drift. Proc. Amer. Math. Soc. 147 (2019) 4045–4054. | DOI | MR | Zbl
and ,[12] On large deviation probabilities for empirical distribution of branching random walks: Schröder case and Böttcher case. Preprint (2017). | arXiv
and ,[13] Large Deviations Techniques and Applications. Jones and Bartlett, Boston (1993). | MR | Zbl
and ,[14] Large deviations for the maximum of a branching random walk. Electron. Commun. Probab. 23 (2018) 34. | DOI | MR | Zbl
and ,[15] Postulates for subadditive processes. Ann. Probab. 2 (1974) 652–680. | DOI | MR | Zbl
,[16] An Asymptotic Expression for the Probability of Ruin within Finite Time. Ann. Probab. 18 (1990) 378–389. | DOI | MR | Zbl
,[17] Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37 (2009) 742–789. | MR | Zbl
and ,[18] Maximums on trees. Stochastic Process. Appl. 125 (2015) 217–232. | DOI | MR | Zbl
and ,[19] The first birth problem for an age-dependent branching process. Ann. Probab. 3 (1975) 790–801. | MR | Zbl
,[20] Limit theorems for first-passage times in linear and nonlinear renewal theory. Adv. Appl. Probab. 16 (1984) 766–803. | DOI | MR | Zbl
,[21] On the probabilities of large deviations for sums of independent random variables. Theory Probab. Appl. 10 (1965) 287–298. | DOI | MR | Zbl
,[22] Precise estimates of presence probabilities in the branching random walk. Stochastic Process. Appl. 44 (1993) 27–39. | DOI | MR | Zbl
,[23] Branching random walks. Springer (2015). | DOI | MR
,[24] Ruin probabilities expressed in terms of ladder height distributions. Scand. Actuar. J. 1974 (1974) 190–204. | DOI | MR | Zbl
Cité par Sources :