Let A be a primitive matrix and let λ be its Perron–Frobenius eigenvalue. We give formulas expressing the associated normalized Perron–Frobenius eigenvector as a simple functional of a multitype Galton–Watson process whose mean matrix is A, as well as of a multitype branching process with mean matrix e$$. These formulas are generalizations of the classical formula for the invariant probability measure of a Markov chain.
Accepté le :
DOI : 10.1051/ps/2019007
Mots-clés : Galton–Watson, branching process, Perron–Frobenius
@article{PS_2019__23__797_0, author = {Cerf, Rapha\"el and Dalmau, Joseba}, title = {Galton{\textendash}Watson and branching process representations of the normalized {Perron{\textendash}Frobenius} eigenvector}, journal = {ESAIM: Probability and Statistics}, pages = {797--802}, publisher = {EDP-Sciences}, volume = {23}, year = {2019}, doi = {10.1051/ps/2019007}, mrnumber = {4045545}, zbl = {1506.60091}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2019007/} }
TY - JOUR AU - Cerf, Raphaël AU - Dalmau, Joseba TI - Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector JO - ESAIM: Probability and Statistics PY - 2019 SP - 797 EP - 802 VL - 23 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2019007/ DO - 10.1051/ps/2019007 LA - en ID - PS_2019__23__797_0 ER -
%0 Journal Article %A Cerf, Raphaël %A Dalmau, Joseba %T Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector %J ESAIM: Probability and Statistics %D 2019 %P 797-802 %V 23 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2019007/ %R 10.1051/ps/2019007 %G en %F PS_2019__23__797_0
Cerf, Raphaël; Dalmau, Joseba. Galton–Watson and branching process representations of the normalized Perron–Frobenius eigenvector. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 797-802. doi : 10.1051/ps/2019007. http://archive.numdam.org/articles/10.1051/ps/2019007/
[1] A Markov chain representation of the normalized Perron-Frobenius eigenvector. Electron. Commun. Probab. 22 (2017) 52. | DOI | MR | Zbl
and ,[2] The Theory of Branching Processes. Springer-Verlag, Berlin, Prentice-Hall, Inc., Englewood Cliffs, NJ (1963). | DOI | MR | Zbl
,[3] Nonnegative Matrices and Markov Chains, 2nd edn. Springer Series in Statistics. Springer-Verlag, New York (1981). | MR | Zbl
,Cité par Sources :