Location and scale behaviour of the quantiles of a natural exponential family
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 244-251.

Let P0 be a probability on the real line generating a natural exponential family (P$$)$$. Fix α in (0, 1). We show that the property that P$$((−, t)) ≤ αP$$((−, t]) for all t implies that there exists a number μ$$ such that P0 is the Gaussian distribution N(μ$$, 1). In other terms, if for all t, the number t is a quantile of P$$ associated to some threshold α ∈ (0, 1), then the exponential family must be Gaussian. The case α = 1∕2, i.e. when t is always a median of P$$, has been considered in Letac et al. [Statist. Prob. Lett. 133 (2018) 38–41]. Analogously let Q be a measure on [0, ) generating a natural exponential family (Q$$)$$. We show that Q$$([0, t−1)) ≤ αQ$$([0, t−1]) for all t > 0 implies that there exists a number p = p$$ > 0 such that Q(dx) ∝ x$$dx, and thus Q$$ has to be a gamma law with parameters p and t.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2019009
Classification : 62E10, 60E05, 45E10
Mots-clés : Characterization of normal and gamma laws, one-dimensional exponential families, quantiles of a distribution, Deny equations
@article{PS_2020__24_1_244_0,
     author = {Piccioni, Mauro and Ko{\l}odziejek, Bartosz and Letac, G\'erard},
     title = {Location and scale behaviour of the quantiles of a natural exponential family},
     journal = {ESAIM: Probability and Statistics},
     pages = {244--251},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2019009},
     mrnumber = {4079212},
     zbl = {1440.62053},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2019009/}
}
TY  - JOUR
AU  - Piccioni, Mauro
AU  - Kołodziejek, Bartosz
AU  - Letac, Gérard
TI  - Location and scale behaviour of the quantiles of a natural exponential family
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 244
EP  - 251
VL  - 24
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2019009/
DO  - 10.1051/ps/2019009
LA  - en
ID  - PS_2020__24_1_244_0
ER  - 
%0 Journal Article
%A Piccioni, Mauro
%A Kołodziejek, Bartosz
%A Letac, Gérard
%T Location and scale behaviour of the quantiles of a natural exponential family
%J ESAIM: Probability and Statistics
%D 2020
%P 244-251
%V 24
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2019009/
%R 10.1051/ps/2019009
%G en
%F PS_2020__24_1_244_0
Piccioni, Mauro; Kołodziejek, Bartosz; Letac, Gérard. Location and scale behaviour of the quantiles of a natural exponential family. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 244-251. doi : 10.1051/ps/2019009. http://archive.numdam.org/articles/10.1051/ps/2019009/

[1] J. Deny, Sur l’équation de convolution μ = μ * σ. Séminaire Brelot-Choquet-Deny (Théorie du Potentiel) 4 (1959–1960) Talk no. 5, 1–11. | Numdam

[2] T.S. Ferguson, Location and scale parameters in exponential families of distributions. Ann. Math. Statist. 33 (1962) 986–1001. | MR | Zbl

[3] G. Letac, L. Mattner and M. Piccioni, The median of an exponential family and the normal law. Statist. Prob. Lett. 133 (2018) 38–41. | MR | Zbl

[4] D.B. Rubin, The calculation of posterior distributions by data augmentation: comment: a noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. J. Am. Statist. Assoc. 82 (1987) 543–546.

[5] A.W. Van Der Vaart, Asymptotic statistics. Cambridge University Press (1998). | MR | Zbl

[6] M.B. Wilk and R. Gnanadesikan, Probability plotting methods for the analysis of data. Biometrika 55 (1968) 1–17.

Cité par Sources :