Let P0 be a probability on the real line generating a natural exponential family (P$$)$$. Fix α in (0, 1). We show that the property that P$$((−∞, t)) ≤ α ≤ P$$((−∞, t]) for all t implies that there exists a number μ$$ such that P0 is the Gaussian distribution N(μ$$, 1). In other terms, if for all t, the number t is a quantile of P$$ associated to some threshold α ∈ (0, 1), then the exponential family must be Gaussian. The case α = 1∕2, i.e. when t is always a median of P$$, has been considered in Letac et al. [Statist. Prob. Lett. 133 (2018) 38–41]. Analogously let Q be a measure on [0, ∞) generating a natural exponential family (Q$$)$$. We show that Q$$([0, t−1)) ≤ α ≤ Q$$([0, t−1]) for all t > 0 implies that there exists a number p = p$$ > 0 such that Q(dx) ∝ x$$dx, and thus Q$$ has to be a gamma law with parameters p and t.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2019009
Mots-clés : Characterization of normal and gamma laws, one-dimensional exponential families, quantiles of a distribution, Deny equations
@article{PS_2020__24_1_244_0, author = {Piccioni, Mauro and Ko{\l}odziejek, Bartosz and Letac, G\'erard}, title = {Location and scale behaviour of the quantiles of a natural exponential family}, journal = {ESAIM: Probability and Statistics}, pages = {244--251}, publisher = {EDP-Sciences}, volume = {24}, year = {2020}, doi = {10.1051/ps/2019009}, mrnumber = {4079212}, zbl = {1440.62053}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2019009/} }
TY - JOUR AU - Piccioni, Mauro AU - Kołodziejek, Bartosz AU - Letac, Gérard TI - Location and scale behaviour of the quantiles of a natural exponential family JO - ESAIM: Probability and Statistics PY - 2020 SP - 244 EP - 251 VL - 24 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2019009/ DO - 10.1051/ps/2019009 LA - en ID - PS_2020__24_1_244_0 ER -
%0 Journal Article %A Piccioni, Mauro %A Kołodziejek, Bartosz %A Letac, Gérard %T Location and scale behaviour of the quantiles of a natural exponential family %J ESAIM: Probability and Statistics %D 2020 %P 244-251 %V 24 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2019009/ %R 10.1051/ps/2019009 %G en %F PS_2020__24_1_244_0
Piccioni, Mauro; Kołodziejek, Bartosz; Letac, Gérard. Location and scale behaviour of the quantiles of a natural exponential family. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 244-251. doi : 10.1051/ps/2019009. http://archive.numdam.org/articles/10.1051/ps/2019009/
[1] Sur l’équation de convolution μ = μ * σ. Séminaire Brelot-Choquet-Deny (Théorie du Potentiel) 4 (1959–1960) Talk no. 5, 1–11. | Numdam
,[2] Location and scale parameters in exponential families of distributions. Ann. Math. Statist. 33 (1962) 986–1001. | MR | Zbl
,[3] The median of an exponential family and the normal law. Statist. Prob. Lett. 133 (2018) 38–41. | MR | Zbl
, and ,[4] The calculation of posterior distributions by data augmentation: comment: a noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: the SIR algorithm. J. Am. Statist. Assoc. 82 (1987) 543–546.
,[5] Asymptotic statistics. Cambridge University Press (1998). | MR | Zbl
,[6] Probability plotting methods for the analysis of data. Biometrika 55 (1968) 1–17.
and ,Cité par Sources :