Estimation of the multifractional function and the stability index of linear multifractional stable processes
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 1-20.

In this paper we are interested in multifractional stable processes where the self-similarity index H becomes time-dependent, while the stability index α remains constant. Using β- negative power variations ( − 1∕2 < β < 0), we propose estimators for the value at a fixed time of the multifractional function H which satisfies an η-Hölder condition and for α in two cases: multifractional Brownian motion (α = 2) and linear multifractional stable motion (0 < α < 2). We get the consistency of our estimates for the underlying processes together with the rate of convergence.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2019012
Classification : 60G18, 60G15, 60G52
Mots-clés : Stable processes, multifractional processes, negative power variations, multifractional function
@article{PS_2020__24_1_1_0,
     author = {Dang, Thi-To-Nhu},
     title = {Estimation of the multifractional function and the stability index of linear multifractional stable processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--20},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2019012},
     mrnumber = {4052999},
     zbl = {1447.60067},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2019012/}
}
TY  - JOUR
AU  - Dang, Thi-To-Nhu
TI  - Estimation of the multifractional function and the stability index of linear multifractional stable processes
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 1
EP  - 20
VL  - 24
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2019012/
DO  - 10.1051/ps/2019012
LA  - en
ID  - PS_2020__24_1_1_0
ER  - 
%0 Journal Article
%A Dang, Thi-To-Nhu
%T Estimation of the multifractional function and the stability index of linear multifractional stable processes
%J ESAIM: Probability and Statistics
%D 2020
%P 1-20
%V 24
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2019012/
%R 10.1051/ps/2019012
%G en
%F PS_2020__24_1_1_0
Dang, Thi-To-Nhu. Estimation of the multifractional function and the stability index of linear multifractional stable processes. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 1-20. doi : 10.1051/ps/2019012. http://archive.numdam.org/articles/10.1051/ps/2019012/

[1] A. Ayache and J. Lévy Véhel, On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stoch. Process. Appl. 111 (2004) 119–156. | DOI | MR | Zbl

[2] A. Ayache and J. Hamonier, Linear multifractional stable motion: wavelet estimation of H(⋅) and α parameter. Lithuanian Math. J. 55 (2015) 159–192. | DOI | MR | Zbl

[3] A. Ayache and J. Hamonier, Linear multifractional stable motion: an a.s. uniformly convergent estimator for Hurst function. Bernoulli 23 (2017) 1365–1407. | DOI | MR | Zbl

[4] A. Ayache and J. Harmonier, Uniformly and strongly consistent estimation for the Hurst function of a Linear Multifractional Stable Motion. Bernoulli 23 (2017) 1365–1407. | DOI | MR | Zbl

[5] A. Ayache, S. Jaffard and M. S. Taqqu, Wavelet construction of generalized multifractional processes. Rev. Matemát. Iberoamer. 23 (2007) 327–370. | DOI | MR | Zbl

[6] J.M. Bardet and D. Surgailis, Nonparametric estimation of the local Hurst function of multifractional processes. Stoch. Process. Appl. 123 (2013) 1004–1045. | DOI | MR | Zbl

[7] A. Basse-O’Connor, C. Heinrich and M. Podolskij, On limit theory for Lévy semi-stationary process. Bernoulli 24 (2018) 3117–3146. | DOI | MR | Zbl

[8] A. Benassi, P. Bertrand, S. Cohen and J. Istas, Identification of the Hurst index of a step fractional Brownian motion. Stat. Inf. Stoc. Proc. 3 (2000) 101–111. | DOI | MR | Zbl

[9] A. Benassi, S. Cohen and J. Istas, Identifying the multifractional function of a Gaussian process. Stat. Proba. Lett. 39 (1998) 337–345. | DOI | MR | Zbl

[10] A. Benassi, S. Jaffard and D. Roux, Gaussian processes and pseudodifferential elliptic operators. Rev. Math. Iberoamer. 13 (1997) 19–90. | DOI | MR | Zbl

[11] J.F. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inf. Stoc. Proc. 4 (2001) 199–227. | DOI | MR | Zbl

[12] J.F. Coeurjolly, Identification of multifractional Brownian motion. Bernoulli 11 (2005) 987–1008. | DOI | MR | Zbl

[13] J.F. Coeurjolly, Erratum: Identification of multifractional Brownian motion. Bernoulli 12 (2006) 381–382. | DOI | MR | Zbl

[14] S. Cohen and J. Istas, Fractional fields and applications. Springer-Verlag, Berlin (2013). | DOI | Zbl

[15] T.T.N. Dang and J. Istas, Estimation of the Hurst and the stability indices of a H-self-similar stable process. Electr. J. Stat. 11 (2017) 4103–4150. | MR | Zbl

[16] P. Embrechts and M. Maejima, Self-similar processes. Princeton University Press, Princeton, NJ (2002). | MR | Zbl

[17] K.J. Falconer and J. Lévy Véhel, Multifractional, multistable, and other processes with prescribed local form. J. Theor. Prob. 22 (2009) 375–401. | DOI | MR | Zbl

[18] K.J. Falconer, R. Le Guével and J. Lévy Véhel, Localizable moving average symmetric stable and multistable processes. Stoch. Models 25 (2009) 648–672. | DOI | MR | Zbl

[19] J. Istas, Estimating self-similarity through complex variations. Electr. J. Stat. 6 (2012) 1392–1408. | MR | Zbl

[20] C. Lacaux, Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré Probab. Statist 40 (2004) 259–277. | DOI | Numdam | MR | Zbl

[21] R. Le Guével, An estimation of the stability and the localisability functions of multistable processes. Electr. J. Stat. 7 (2013) 1129–1166. | MR | Zbl

[22] S. Mazur, D. Otryakhin and M. Podolskij, Estimation of the linear fractional stable motion. Preprint (2018). | arXiv | MR

[23] M. Meerschaert, D. Wu, and Y. Xiao, Local times of multifractional Brownian sheets. Bernoulli 14 (2008) 865–898. | DOI | MR | Zbl

[24] R.F Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results. Technical Report 2645, Rapport de recherche de l’INRIA (1995).

[25] G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapmann and Hall, New York (1994). | MR | Zbl

[26] S. Stoev and M.S. Taqqu, Stochastic properties of the linear multifractional stable motion. Adv. Appl. Probab. 36 (2004) 1085–1115. | DOI | MR | Zbl

[27] S. Stoev and M.S. Taqqu, How rich is the class of multifractional Brownian motions? Stoch. Process. Appl. 116 (2006) 200–221. | DOI | MR | Zbl

[28] S. Stoev, V. Pipiras and M.S. Taqqu, Estimation of the self-similarity parameter in linear fractional stable motion. Signal Process. 82 (2002) 1873–1901. | DOI | Zbl

Cité par Sources :