Improved one-sided deviation inequalities under regularity assumptions for product measures
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 979-990.

This note is concerned with lower tail estimates for product measures. Some improved deviation inequalities are obtained for functions satisfying some regularity and monotonicity assumptions. The arguments are based on semigroup interpolation together with Harris’s negative association inequality and hypercontractive estimates.

DOI : 10.1051/ps/2019014
Classification : 60E15, 26D10, 47D07
Mots-clés : Functional inequalities, semigroups, hypercontractivity, convexity
Tanguy, Kevin 1

1
@article{PS_2019__23__979_0,
     author = {Tanguy, Kevin},
     title = {Improved one-sided deviation inequalities under regularity assumptions for product measures},
     journal = {ESAIM: Probability and Statistics},
     pages = {979--990},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2019014},
     mrnumber = {4046859},
     zbl = {1506.60031},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2019014/}
}
TY  - JOUR
AU  - Tanguy, Kevin
TI  - Improved one-sided deviation inequalities under regularity assumptions for product measures
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 979
EP  - 990
VL  - 23
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2019014/
DO  - 10.1051/ps/2019014
LA  - en
ID  - PS_2019__23__979_0
ER  - 
%0 Journal Article
%A Tanguy, Kevin
%T Improved one-sided deviation inequalities under regularity assumptions for product measures
%J ESAIM: Probability and Statistics
%D 2019
%P 979-990
%V 23
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2019014/
%R 10.1051/ps/2019014
%G en
%F PS_2019__23__979_0
Tanguy, Kevin. Improved one-sided deviation inequalities under regularity assumptions for product measures. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 979-990. doi : 10.1051/ps/2019014. http://archive.numdam.org/articles/10.1051/ps/2019014/

[1] D. Bakry, I. Gentil and M. Ledoux, Analysis and geometry of Markov diffusion operators. In vol. 348 of Grundlehren der Mathematischen Wissenschaften (2014). | MR | Zbl

[2] S. Bobkov, Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Prob. 27 (1999) 1903–1921. | DOI | MR | Zbl

[3] M. Bonnefont and A. Joulin, Intertwining relations for one-dimensional diffusions and application to functional inequalities. Potent. Anal. 41 (2014) 1005–1031. | DOI | MR | Zbl

[4] M. Bonnefont, A. Joulin and Y. Ma, A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions. ESAIM: PS 20 (2016) 18–29. | DOI | Numdam | MR | Zbl

[5] S. Boucheron and M. Thomas, Concentration inequalities for order statistics. Electr. Commun. Probab. 17 (2012) 51. | MR | Zbl

[6] T. Boucheron, G. Lugosi and P. Massart, Concentration inequalities: a nonasymptotic theory of independance. Oxford University Press (2013). | DOI | MR | Zbl

[7] S. Chatterjee, Superconcentration and related topics. Springer (2014). | DOI | MR | Zbl

[8] D. Cordero-Erausquin and M. Ledoux, Hypercontractive Measures Talagrand’s inequality, and Influences. Geometric aspects of functional analysis. Vol. 2050 of Lect. Notes Math. (2012) 169–189. | DOI | MR | Zbl

[9] L. Gross, Logarithmic sobolev inequalities. Am. J. Math. 97 (1975) 1061–1083. | DOI | MR | Zbl

[10] C. Houdré, Remarks on deviation inequalities for functions of infinitely divisible random vecteors. Ann. Probab. 30 (2002) 1223–1237. | DOI | MR | Zbl

[11] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and related properties of random sequences and processes. Springer Series in Statistics (1983). | MR | Zbl

[12] M. Ledoux, The geometry of Markov diffusions operators. Ann. Fac. Sci. Toulouse Math. 9 (2000) 305–366. | DOI | Numdam | MR | Zbl

[13] M. Ledoux, The concentration of measure phenomenon. Vol. 89 of Mathematical Surveys and Monographs (2001). | MR | Zbl

[14] F. Malrieu and D. Talay, Concentration inequalities for Euler schemes. Monte Carlo and quasi-Monte Carlo methods 2004 (2006). | MR | Zbl

[15] G. Pagès, Functional co-monotony of processes with applications to peacocks and barrier options. Séminaire de Probabilités XLV, 2078 (2013). | DOI | MR | Zbl

[16] G. Paouris and P. Valettas, A gaussian small deviation inequality for convex functions. Ann. Probab. 46 (2018) 1441–1454. | DOI | MR | Zbl

[17] G. Paouris and P. Valettas, Variance estimates and almost euclidean structure. Adv. Geometry 19 (2019) 165–189. | DOI | MR | Zbl

[18] G. Paouris, P. Valettas and J. Zinn, Random version of Dvoretzky’s Theorem in lpn. Stochast. Process. Appl. 127 (2017) 3187–3227. | DOI | MR | Zbl

[19] P. Valettas, On the tightness of Gaussian concentration for convex functions. J. Anal. Math. 139 (2019) 341–367. | DOI | MR | Zbl

[20] K. Tanguy, Some superconcentration inequalities for extrema of stationary gaussian processes. Stat. Probab. Lett. 106 (2015) 239–246. | DOI | MR | Zbl

[21] K. Tanguy, Quelques inégalités de superconcentration: théorie et applications (in French). Ph.D. thesis, Institute of Mathematics of Toulouse (2017).

[22] K. Tanguy, Non asymptotic variance bounds and deviation inequalities by optimal transport. Electr. J. Probab. 24 (2019) 13. | MR | Zbl

[23] N. Tien Dung, An improved bound for the gaussian concentration inequality. Preprint: (2019). | arXiv

[24] P.M. Samson, Concentration inequalities for convex functions on product spaces. Stoch. Inequalit. Appl. 56 (2003) 33–52. | MR | Zbl

Cité par Sources :