We establish deviation inequalities for the maxima of partial sums of a martingale differences sequence, and of an orthomartingale differences random field. These inequalities can be used to give rates for linear regression and the law of large numbers.
Accepté le :
DOI : 10.1051/ps/2019016
Mots-clés : Martingales, random fields, orthomartingales, deviation inequalities, complete convergence
@article{PS_2019__23__922_0, author = {Giraudo, Davide}, title = {Deviation inequalities for {Banach} space valued martingales differences sequences and random fields}, journal = {ESAIM: Probability and Statistics}, pages = {922--946}, publisher = {EDP-Sciences}, volume = {23}, year = {2019}, doi = {10.1051/ps/2019016}, mrnumber = {4046858}, zbl = {1506.60008}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2019016/} }
TY - JOUR AU - Giraudo, Davide TI - Deviation inequalities for Banach space valued martingales differences sequences and random fields JO - ESAIM: Probability and Statistics PY - 2019 SP - 922 EP - 946 VL - 23 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2019016/ DO - 10.1051/ps/2019016 LA - en ID - PS_2019__23__922_0 ER -
%0 Journal Article %A Giraudo, Davide %T Deviation inequalities for Banach space valued martingales differences sequences and random fields %J ESAIM: Probability and Statistics %D 2019 %P 922-946 %V 23 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2019016/ %R 10.1051/ps/2019016 %G en %F PS_2019__23__922_0
Giraudo, Davide. Deviation inequalities for Banach space valued martingales differences sequences and random fields. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 922-946. doi : 10.1051/ps/2019016. http://archive.numdam.org/articles/10.1051/ps/2019016/
[1] Convergence rates in the law of large numbers for martingales. Stochastic Process. Appl. 36 (1990) 181–194. | DOI | MR | Zbl
,[2] Espaces p-lisses et q-convexes, inégalités de Burkholder. Séminaire Maurey-Schwartz (1975). | Numdam | MR | Zbl
,[3] Weighted sums of certain dependent random variables. Tôhoku Math. J. 19 (1967) 357–367. | DOI | MR | Zbl
,[4] Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1965) 108–123. | DOI | MR | Zbl
and ,[5] Distribution function inequalities for martingales. Ann. Probab. 1 (1973) 19–42. | DOI | MR | Zbl
,[6] A general class of exponential inequalities for martingales and ratios. Ann. Probab. 27 (1999) 537–564. | DOI | MR | Zbl
,[7] Convergence rates in the law of large numbers for Banach-valued dependent variables. Teor. Veroyatn. Primen. 52 (2007) 562–587. | DOI | MR | Zbl
and ,[8] Burkholder’s inequality for multiindex martingales. Ann. Math. Inf . 32 (2005) 45–51. | MR | Zbl
,[9] Large deviation exponential inequalities for supermartingales. Electron. Commun. Probab. 17 (2012) 59. | MR | Zbl
, and ,[10] Exponential inequalities for martingales with applications. Electron. J. Probab. 20 (2015) 1. | MR | Zbl
, and ,[11] Deviation inequalities for martingales with applications. J. Math. Anal. Appl. 448 (2017) 538–566. | DOI | MR | Zbl
, and ,[12] Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices. Ann. Probab. 6 (1978) 469–482. | MR | Zbl
,[13] An exact rate of convergence in the functional central limit theorem for special martingale difference arrays. Z. Wahrsch. Verw. Gebiete 65 (1984) 523–534. | DOI | MR | Zbl
,[14] Convergence rates in the law of large numbers for arrays of Banach valued martingale differences. Abstr. Appl. Anal. (2013) 715054. | MR | Zbl
,[15] Convergence rates in the law of large numbers for arrays of martingale differences. J. Math. Anal. Appl. 417 (2014) 733–773. | DOI | MR | Zbl
and ,[16] Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58 (1963) 13–30. | DOI | MR | Zbl
,[17] Martingale inequalities in rearrangement invariant function spaces. Israel J. Math. 64 (1988) 267–275. | DOI | MR | Zbl
and ,[18] Multiparameter processes, Springer Monographs in Mathematics. An introduction to random fields. Springer-Verlag, New York (2002). | DOI | MR | Zbl
,[19] Convergence rates in the SLLN for some classes of dependent random fields. J. Math. Anal. Appl. 380 (2011) 571–584. | DOI | MR | Zbl
and ,[20] An approach to complete convergence theorems for dependent random fields via application of Fuk-Nagaev inequality. J. Math. Anal. Appl. 437 (2016) 380–395. | DOI | MR | Zbl
,[21] Large deviations for martingales. Stochastic Process. Appl. 96 (2001) 143–159. | DOI | MR | Zbl
and ,[22] On probability and moment inequalities for supermartingales and martingales. Vol. 79 of Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part II 2002 (2003) 35–46. | MR | Zbl
,[23] Martingales with values in uniformly convex spaces. Israel J. Math. 20 (1975) 326–350. | DOI | MR | Zbl
,[24] Ordering of distributions and rearrangement of functions. Ann. Probab. 9 (1981) 276–283. | DOI | MR | Zbl
,Cité par Sources :