Deviation inequalities for Banach space valued martingales differences sequences and random fields
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 922-946.

We establish deviation inequalities for the maxima of partial sums of a martingale differences sequence, and of an orthomartingale differences random field. These inequalities can be used to give rates for linear regression and the law of large numbers.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2019016
Classification : 60B12, 60G42, 60G48, 60G60
Mots-clés : Martingales, random fields, orthomartingales, deviation inequalities, complete convergence
Giraudo, Davide 1

1
@article{PS_2019__23__922_0,
     author = {Giraudo, Davide},
     title = {Deviation inequalities for {Banach} space valued martingales differences sequences and random fields},
     journal = {ESAIM: Probability and Statistics},
     pages = {922--946},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2019016},
     mrnumber = {4046858},
     zbl = {1506.60008},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2019016/}
}
TY  - JOUR
AU  - Giraudo, Davide
TI  - Deviation inequalities for Banach space valued martingales differences sequences and random fields
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 922
EP  - 946
VL  - 23
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2019016/
DO  - 10.1051/ps/2019016
LA  - en
ID  - PS_2019__23__922_0
ER  - 
%0 Journal Article
%A Giraudo, Davide
%T Deviation inequalities for Banach space valued martingales differences sequences and random fields
%J ESAIM: Probability and Statistics
%D 2019
%P 922-946
%V 23
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2019016/
%R 10.1051/ps/2019016
%G en
%F PS_2019__23__922_0
Giraudo, Davide. Deviation inequalities for Banach space valued martingales differences sequences and random fields. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 922-946. doi : 10.1051/ps/2019016. http://archive.numdam.org/articles/10.1051/ps/2019016/

[1] G. Alsmeyer, Convergence rates in the law of large numbers for martingales. Stochastic Process. Appl. 36 (1990) 181–194. | DOI | MR | Zbl

[2] P. Assouad, Espaces p-lisses et q-convexes, inégalités de Burkholder. Séminaire Maurey-Schwartz (1975). | Numdam | MR | Zbl

[3] K. Azuma, Weighted sums of certain dependent random variables. Tôhoku Math. J. 19 (1967) 357–367. | DOI | MR | Zbl

[4] L.E. Baum and M. Katz, Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1965) 108–123. | DOI | MR | Zbl

[5] D.L. Burkholder, Distribution function inequalities for martingales. Ann. Probab. 1 (1973) 19–42. | DOI | MR | Zbl

[6] V.H. De La Peña, A general class of exponential inequalities for martingales and ratios. Ann. Probab. 27 (1999) 537–564. | DOI | MR | Zbl

[7] J. Dedecker and F. Merlevède, Convergence rates in the law of large numbers for Banach-valued dependent variables. Teor. Veroyatn. Primen. 52 (2007) 562–587. | DOI | MR | Zbl

[8] I. Fazekas, Burkholder’s inequality for multiindex martingales. Ann. Math. Inf . 32 (2005) 45–51. | MR | Zbl

[9] X. Fan, I. Grama and Q. Liu, Large deviation exponential inequalities for supermartingales. Electron. Commun. Probab. 17 (2012) 59. | MR | Zbl

[10] X. Fan, I. Grama and Q. Liu, Exponential inequalities for martingales with applications. Electron. J. Probab. 20 (2015) 1. | MR | Zbl

[11] X. Fan, I. Grama and Q. Liu, Deviation inequalities for martingales with applications. J. Math. Anal. Appl. 448 (2017) 538–566. | DOI | MR | Zbl

[12] A. Gut, Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices. Ann. Probab. 6 (1978) 469–482. | MR | Zbl

[13] E. Haeusler, An exact rate of convergence in the functional central limit theorem for special martingale difference arrays. Z. Wahrsch. Verw. Gebiete 65 (1984) 523–534. | DOI | MR | Zbl

[14] S. Hao, Convergence rates in the law of large numbers for arrays of Banach valued martingale differences. Abstr. Appl. Anal. (2013) 715054. | MR | Zbl

[15] S. Hao and Q. Liu, Convergence rates in the law of large numbers for arrays of martingale differences. J. Math. Anal. Appl. 417 (2014) 733–773. | DOI | MR | Zbl

[16] W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58 (1963) 13–30. | DOI | MR | Zbl

[17] W.B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces. Israel J. Math. 64 (1988) 267–275. | DOI | MR | Zbl

[18] D. Khoshnevisan, Multiparameter processes, Springer Monographs in Mathematics. An introduction to random fields. Springer-Verlag, New York (2002). | DOI | MR | Zbl

[19] A. Kuczmaszewska and Z.A. Lagodowski, Convergence rates in the SLLN for some classes of dependent random fields. J. Math. Anal. Appl. 380 (2011) 571–584. | DOI | MR | Zbl

[20] Z.A. Lagodowski, An approach to complete convergence theorems for dependent random fields via application of Fuk-Nagaev inequality. J. Math. Anal. Appl. 437 (2016) 380–395. | DOI | MR | Zbl

[21] E. Lesigne and D. Volný, Large deviations for martingales. Stochastic Process. Appl. 96 (2001) 143–159. | DOI | MR | Zbl

[22] S.V. Nagaev, On probability and moment inequalities for supermartingales and martingales. Vol. 79 of Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part II 2002 (2003) 35–46. | MR | Zbl

[23] G. Pisier, Martingales with values in uniformly convex spaces. Israel J. Math. 20 (1975) 326–350. | DOI | MR | Zbl

[24] L. Rüschendorf, Ordering of distributions and rearrangement of functions. Ann. Probab. 9 (1981) 276–283. | DOI | MR | Zbl

Cité par Sources :