On Bernstein–Kantorovich invariance principle in Hölder spaces and weighted scan statistics
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 186-206.

Let ξ$$ be the polygonal line partial sums process built on i.i.d. centered random variables X$$, i ≥ 1. The Bernstein-Kantorovich theorem states the equivalence between the finiteness of E|X1|$$ and the joint weak convergence in C[0, 1] of n−1∕2ξ$$ to a Brownian motion W with the moments convergence of $$ to $$. For 0 < α < 1∕2 and p (α) = (1 ∕ 2 - α) -1, we prove that the joint convergence in the separable Hölder space $$ of n−1∕2ξ$$ to W jointly with the one of $$ to $$ holds if and only if P(|X1| > t) = o(t$$) when r < p(α) or E|X1|$$ < when rp(α). As an application we show that for every α < 1∕2, all the α-Hölderian moments of the polygonal uniform quantile process converge to the corresponding ones of a Brownian bridge. We also obtain the asymptotic behavior of the rth moments of some α-Hölderian weighted scan statistics where the natural border for α is 1∕2 − 1∕p when E|X1|$$ < . In the case where the X$$’s are p regularly varying, we can complete these results for α > 1∕2 − 1∕p with an appropriate normalization.

DOI : 10.1051/ps/2019027
Classification : 60F17, 62G30
Mots-clés : Fonctional central limit theorem, Hölder space, moments, quantile process, regular variation, scan statistics, Wasserstein distance
@article{PS_2020__24_1_186_0,
     author = {Ra\v{c}kauskas, Alfredas and Suquet, Charles},
     title = {On {Bernstein{\textendash}Kantorovich} invariance principle in {H\"older} spaces and weighted scan statistics},
     journal = {ESAIM: Probability and Statistics},
     pages = {186--206},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2019027},
     mrnumber = {4072633},
     zbl = {1434.60109},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2019027/}
}
TY  - JOUR
AU  - Račkauskas, Alfredas
AU  - Suquet, Charles
TI  - On Bernstein–Kantorovich invariance principle in Hölder spaces and weighted scan statistics
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 186
EP  - 206
VL  - 24
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2019027/
DO  - 10.1051/ps/2019027
LA  - en
ID  - PS_2020__24_1_186_0
ER  - 
%0 Journal Article
%A Račkauskas, Alfredas
%A Suquet, Charles
%T On Bernstein–Kantorovich invariance principle in Hölder spaces and weighted scan statistics
%J ESAIM: Probability and Statistics
%D 2020
%P 186-206
%V 24
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2019027/
%R 10.1051/ps/2019027
%G en
%F PS_2020__24_1_186_0
Račkauskas, Alfredas; Suquet, Charles. On Bernstein–Kantorovich invariance principle in Hölder spaces and weighted scan statistics. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 186-206. doi : 10.1051/ps/2019027. http://archive.numdam.org/articles/10.1051/ps/2019027/

[1] N. Balakrishnan and J. Glaz, Scan statistics and applications. Birkhäuser Boston, Inc., Boston, MA (1999). | MR | Zbl

[2] S.N. Bernstein, Quelques remarques sur le théorème limite Liapounoff. Dokl. Akad. Nauk. SSSR 24 (1939) 3–8. | JFM | Zbl

[3] P. Billingsley, Convergence of probability measures. Wiley, New York (1968). | MR | Zbl

[4] N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular variation. Encyclopaedia of Mathematics and its Applications. Cambridge University Press (1987). | MR | Zbl

[5] Z. Ciesielski, On the isomorphisms of the spaces h$$ and m. Bull. Acad. Pol. Sci. Ser. Sci. Math. Phys. 8 (1960) 217–222. | MR | Zbl

[6] W. Feller, Vol. 2 of An Introduction to Probability Theory and Its Applications. Wiley, second edition (1971). | MR | Zbl

[7] D. Hamadouche and Ch. Suquet, Optimal Hölderian functional central limit theorem for uniform empirical and quantile processes. Math. Methods Stat. 15 (2006) 207–223. | MR

[8] J. Markevičiūtė, A. Račkauskas and Ch. Suquet, Functional central limit theorems for sums of nearly nonstationary processes. Lithuanian Math. J. 52 (2012) 282–296. | DOI | MR | Zbl

[9] T. Mikosch and A. Račkauskas The limit distribution of the maximum increment of a random walk with regularly varying jump size distribution. Bernoulli 16 (2010) 1016–1038. | DOI | MR | Zbl

[10] V. Pozdnyakov, S. Wallenstein and J. Glaz, Scan statistics : methods and applications. Birkhäuser Boston, Inc., Boston, MA (2009). | MR | Zbl

[11] S.T. Rachev, Probability metrics and the stability of stochastic models. Wiley (1991). | MR | Zbl

[12] A. Račkauskas and Ch. Suquet, Necessary and sufficient condition for the Lamperti invariance principle. Theory Prob. Math. Stat. 68 (2003) 115–124. | Zbl

[13] A. Račkauskas and Ch. Suquet, Necessary and sufficient condition for the Hölderian functional central limit theorem. J. Theor. Prob. 17 (2004) 221–243. | DOI | MR | Zbl

[14] A. Račkauskas and Ch. Suquet, Hölder norm test statistics for epidemic change. J. Stat. Plan. Inference 126 (2004) 495–520. | DOI | MR | Zbl

[15] G.R. Shorack and J.A. Wellner, Empirical processes with applications to statistics. John Wiley & Sons, New York (1986). | MR | Zbl

Cité par Sources :

Research supported by the Research Council of Lithuania, grant No. S-MIP-17-76.