On the excursion area of perturbed Gaussian fields
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 252-274.

We investigate Lipschitz-Killing curvatures for excursion sets of random fields on ℝ2 under a very specific perturbation, namely a small spatial-invariant random perturbation with zero mean. An expansion formula for mean curvatures is derived when the magnitude of the perturbation vanishes, which recovers the Gaussian Kinematic Formula at the limit by contiguity of the model. We develop an asymptotic study of the perturbed excursion area behaviour that leads to a quantitative non-Gaussian limit theorem, in Wasserstein distance, for fixed small perturbations and growing domain. When letting both the perturbation vanish and the domain grow, a standard Central Limit Theorem follows. Taking advantage of these results, we propose an estimator for the perturbation variance which turns out to be asymptotically normal and unbiased, allowing to make inference through sparse information on the field.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2020002
Classification : 60G60, 60F05, 60G15, 62M40, 62F12
Mots-clés : LK curvatures, Gaussian fields, perturbed fields, quantitative limit theorems, sojourn times, sparse inference for random fields, spatial-invariant random perturbations
@article{PS_2020__24_1_252_0,
     author = {Di Bernardino, Elena and Estrade, Anne and Rossi, Maurizia},
     title = {On the excursion area of perturbed {Gaussian} fields},
     journal = {ESAIM: Probability and Statistics},
     pages = {252--274},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2020002},
     mrnumber = {4090340},
     zbl = {1447.60078},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2020002/}
}
TY  - JOUR
AU  - Di Bernardino, Elena
AU  - Estrade, Anne
AU  - Rossi, Maurizia
TI  - On the excursion area of perturbed Gaussian fields
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 252
EP  - 274
VL  - 24
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2020002/
DO  - 10.1051/ps/2020002
LA  - en
ID  - PS_2020__24_1_252_0
ER  - 
%0 Journal Article
%A Di Bernardino, Elena
%A Estrade, Anne
%A Rossi, Maurizia
%T On the excursion area of perturbed Gaussian fields
%J ESAIM: Probability and Statistics
%D 2020
%P 252-274
%V 24
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2020002/
%R 10.1051/ps/2020002
%G en
%F PS_2020__24_1_252_0
Di Bernardino, Elena; Estrade, Anne; Rossi, Maurizia. On the excursion area of perturbed Gaussian fields. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 252-274. doi : 10.1051/ps/2020002. http://archive.numdam.org/articles/10.1051/ps/2020002/

[1] R.J. Adler and J.E. Taylor, Random fields and geometry. Springer Monographs in Mathematics. Springer, New York (2007). | MR | Zbl

[2] R.J. Adler and J.E. Taylor, Topological complexity of smooth random functions. Lectures from the 39th Probability Summer School held in Saint-Flour, 2009, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. Vol. 2019 of Lecture Notes in Mathematics. Springer, Heidelberg (2011). | DOI | MR | Zbl

[3] R.J. Adler, G. Samorodnitsky and J.E. Taylor, Excursion sets of three classes of stable random fields. Adv. Appl. Prob. 42 (2010) 293–318. | DOI | MR | Zbl

[4] D. Beliaev, M. Mcauley and S. Muirhead, On the number of excursion sets of planar Gaussian fields. Preprint to 1807.10209 (2018). | MR

[5] C. Berzin, Estimation of Local Anisotropy Based on Level Sets. Preprint to 1801.03760 (2018). | MR

[6] T.H. Beuman, A.M. Turner and V. Vitelli, Stochastic geometry and topology of non-Gaussian fields. Proc. Natl. Acad. Sci. 109 (2012) 19943–19948. | DOI | MR

[7] H. Biermé and A. Desolneux, On the perimeter of excursion sets of shot noise random fields. Ann. Probab. 44 (2016) 521–543. | DOI | MR | Zbl

[8] H. Biermé, E. Di Bernardino, C. Duval and A. Estrade, Lipschitz-Killing curvatures of excursion sets for two-dimensional random fields. Electr. J. Stat. 13 (2019) 536–581. | MR | Zbl

[9] F. Bron and D. Jeulin, Modelling a food microstructure by random sets. Image Anal. Stereol. 23 (2011). | DOI | Zbl

[10] A. Bulinski, E. Spodarev and F. Timmermann, Central limit theorems for the excursion set volumes of weakly dependent random fields. Bernoulli 18 (2012) 100–118. | DOI | MR | Zbl

[11] A.E. Burgess, Mammographic structure: Data preparation and spatial statistics analysis. Medical Imaging’99. International Society for Optics and Photonics (1999) 642–653.

[12] E.M. Cabaña, Affine processes: a test of isotropy based on level sets. SIAM J. Appl. Math. 47 (1987) 886–891. | DOI | MR | Zbl

[13] B. Casaponsa, B. Crill, L. Colombo, L. Danese, J. Bock, A. Catalano, A. Bonaldi, S. Basak, L. Bonavera, A. Coulais et al., Planck 2015 results: XVI. Isotropy and statistics of the CMB. Astron. Astrophys. 594 (2016) A16. | DOI

[14] E. Di Bernardino and C. Duval, Statistics for Gaussian Random Fields with Unknown Location and Scale using Lipschitz-Killing Curvatures. Preprint (2019). | HAL | MR

[15] A. Estrade and J.R. León, A central limit theorem for the Euler characteristic of a Gaussian excursion set. Ann. Probab. 44 (2016) 3849–3878. | DOI | MR | Zbl

[16] Y. Fantaye, D. Marinucci, F. Hansen and D. Maino, Applications of the Gaussian kinematic formula to CMB data analysis. Phys. Rev. D 91 (2015) 063501. | DOI

[17] M.Y. Hassan and R.H. Hijazi, A bimodal exponential power distribution. Pak. J. Stat. 26 (2010) 379–396. | MR | Zbl

[18] C. Hikage and T. Matsubara, Limits on second-order non-gaussianity from Minkowski functionals of WMAP data. Mon. Not. R. Astron. Soc. 425 (2012) 2187–2196. | DOI

[19] E. Hille, A class of reciprocal functions. Ann. Math. 27 (1926) 427–464. | DOI | JFM | MR

[20] P. Imkeller, V. Pérez-Abreu and J. Vives, Chaos expansions of double intersection local time of Brownian motion in R$$ and renormalization. Stoch. Process. Appl. 56 (1995) 1–34. | DOI | MR | Zbl

[21] M. Kratz and J. León, Level curves crossings and applications for Gaussian models. Extremes 13 (2010) 315–351. | DOI | MR | Zbl

[22] M. Kratz and S. Vadlamani, Central limit theorem for Lipschitz–Killing curvatures of excursion sets of Gaussian random fields. J. Theor.Probab. 31 (2018) 1729–1758. | DOI | MR | Zbl

[23] R. Lachièze-Rey, Normal convergence of nonlocalised geometric functionals and shot-noise excursions. Ann. Appl. Probab. 29 (2019) 2613–2653. | DOI | MR | Zbl

[24] D. Marinucci and G. Peccati, Random fields on the sphere. Representation, limit theorems and cosmological applications. In Vol. 389 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2011). | MR | Zbl

[25] D. Marinucci and M. Rossi, Stein-Malliavin approximations for nonlinear functionals of random eigenfunctions on 𝕊$$. J. Funct. Anal. 268 (2015) 2379–2420. | DOI | MR | Zbl

[26] T. Matsubara, Analytic minkowski functionals of the cosmic microwave background: second-order non-gaussianity with bispectrum and trispectrum. Phys. Rev. D 81 (2010) 083505. | DOI

[27] D. Müller, A central limit theorem for Lipschitz–Killing curvatures of Gaussian excursions. J. Math. Anal. Appl. 452 (2017) 1040–1081. | DOI | MR | Zbl

[28] V.-H. Pham, On the rate of convergence for central limit theorems of sojourn times of Gaussian fields. Stoch. Process. Appl. 123 (2013) 2158–2174. | DOI | MR | Zbl

[29] A. Roberts and M. Teubner, Transport properties of heterogeneous materials derived from Gaussian random fields: bounds and simulation. Phys. Rev. E 51 (1995) 4141–4154. | DOI

[30] A. Roberts and S. Torquato, Chord-distribution functions of three-dimensional random media: approximate first-passage times of Gaussian processes. Phys. Rev. E 59 (1999) 4953–4963. | DOI | MR

[31] R. Schneider and W. Weil, Stochastic and integral geometry. Probability and its Applications. Springer-Verlag, Berlin (2008). | MR | Zbl

[32] E. Spodarev, Limit theorems for excursion sets of stationary random fields. In Modern stochastics and applications, vol. 90 of Springer Optim. Appl. Springer, Cham (2014) 221–241. | MR | Zbl

[33] C. Thäle, 50 years sets with positive reach – a survey. Surv. Math. Appl. 3 (2008) 123–165. | MR | Zbl

[34] K.J. Worsley, The geometry of random images. Chance 1 (1997) 27–40.

Cité par Sources :