Continuous-time Markov processes, orthogonal polynomials and Lancaster probabilities
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 100-112.

This work links the conditional probability structure of Lancaster probabilities to a construction of reversible continuous-time Markov processes. Such a task is achieved by using the spectral expansion of the corresponding transition probabilities in order to introduce a continuous time dependence in the orthogonal representation inherent to Lancaster probabilities. This relationship provides a novel methodology to build continuous-time Markov processes via Lancaster probabilities. Particular cases of well-known models are seen to fall within this approach. As a byproduct, it also unveils new identities associated to well known orthogonal polynomials.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2020004
Classification : 60J25, 60J35, 33C45
Mots-clés : Continuous-time reversible Markov process, Lancaster probabilities, orthogonal polynomials, spectral expansion
@article{PS_2020__24_1_100_0,
     author = {Mena, Rams\'es H. and Palma, Freddy},
     title = {Continuous-time {Markov} processes, orthogonal polynomials and {Lancaster} probabilities},
     journal = {ESAIM: Probability and Statistics},
     pages = {100--112},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2020004},
     mrnumber = {4071319},
     zbl = {1434.60196},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2020004/}
}
TY  - JOUR
AU  - Mena, Ramsés H.
AU  - Palma, Freddy
TI  - Continuous-time Markov processes, orthogonal polynomials and Lancaster probabilities
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 100
EP  - 112
VL  - 24
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2020004/
DO  - 10.1051/ps/2020004
LA  - en
ID  - PS_2020__24_1_100_0
ER  - 
%0 Journal Article
%A Mena, Ramsés H.
%A Palma, Freddy
%T Continuous-time Markov processes, orthogonal polynomials and Lancaster probabilities
%J ESAIM: Probability and Statistics
%D 2020
%P 100-112
%V 24
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2020004/
%R 10.1051/ps/2020004
%G en
%F PS_2020__24_1_100_0
Mena, Ramsés H.; Palma, Freddy. Continuous-time Markov processes, orthogonal polynomials and Lancaster probabilities. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 100-112. doi : 10.1051/ps/2020004. http://archive.numdam.org/articles/10.1051/ps/2020004/

[1] H. Bateman and A. Erdélyi, Vol. 1 of Higher transcendental functions. McGraw-Hill, New York (1953). | Zbl

[2] T. Björk, Arbitrage theory in continuous time. Oxford University Press (2009). | Zbl

[3] J. Cox, J. Ingersoll and S. Ross, A theory of the term structure of interest rates. Theory Valuat. 53 (2005) 126–164. | MR | Zbl

[4] P. Diaconis, K. Khare and L. Saloff-Coste, Gibbs sampling, exponential families and orthogonal polynomials. Stat. Sci. 23 (2008) 151–178. | MR | Zbl

[5] G.K. Eagleson, Polynomial expansions of bivariate distributions. Ann. Math. Stat. 35 (1964) 1208–1215. | MR | Zbl

[6] S.N. Ethier and R.C. Griffiths, The transition function of a Fleming Viot process. Ann. Probab. 21 (1993) 1571–1590. | MR | Zbl

[7] S.N. Ethier and T.G. Kurtz, Markov processes: characterization and convergence. John Wiley & Sons (2009). | Zbl

[8] B. Griffiths, Stochastic processes with orthogonal polynomial eigenfunctions. J. Comp. Appl. Math. 233 (2008) 739–744. | MR | Zbl

[9] R.C. Griffiths and D. Spanó, Diffusion processes and coalescent trees. London Mathematical Society Lecture Notes Series (2010). | MR | Zbl

[10] P.A. Jenkins and D. Spanó, Exact simulation of the Wright-Fisher diffusion. Ann. Appl. Probab. 27 (2017) 1478–1509. | MR | Zbl

[11] S. Karlin, A first course in stochastic processes. Academic Press (2014). | Zbl

[12] S. Karlin and J.L. Mcgregor, The differential equations of birth and death processes, and the Stieltjes moment problem. Trans. Am. Math. Soc. 85 (1957) 489–546. | MR | Zbl

[13] F.P. Kelly, Reversibility and stochastic networks. Cambridge University Press (2011). | MR | Zbl

[14] A.E. Koudou, Lancaster bivariate probability distributions with Poisson, negative binomial and gamma margins. Test 7 (1998) 95–110. | MR | Zbl

[15] H.O. Lancaster, The structure of bivariate distributions. Ann. Math. Statist. 29 (1958) 719–736. | MR | Zbl

[16] H.O. Lancaster, Correlations and canonical forms of bivariate distributions. Ann. Math. Stati. 34 (1963) 532–538. | MR | Zbl

[17] H.O. Lancaster, Joint probability distributions in the Meixner class. J. Roy. Statist. Soc. 37 (1975) 434–443. | MR | Zbl

[18] G. Letac, Lancaster probabilities and Gibbs sampling. Stat. Sci. 23 (2008) 187–191. | Zbl

[19] T.M. Liggett, vol. 113 of Continuous time Markov processes: an introduction. American Mathematical Soc. (2010). | MR | Zbl

[20] E.B. Mcbride, Obtaining generating functions. Springer-Verlag (1971). | DOI | MR | Zbl

[21] J. Meixner, Orthogonale polynom system mit einer besonderen gestalt der erzeugenden funktion. J. London Math. Soc. 9 (1934) 6–13. | DOI | MR | Zbl

[22] R. Mena and S. Walker, On a construction of Markov models in continuous time. METRON 67 (2009) 303–323. | Zbl

[23] E.D. Rainville, Special functions. Chelsea (1971). | MR | Zbl

[24] W. Schoutens, Vol. 146 of Stochastic processes and orthogonal polynomials. Springer Science & Business Media (2012). | MR | Zbl

[25] E.A. Vann Doorn and A.I. Zeifman, Birth-death processes with killing. Stat. Prob. Lett. 72 (2005) 33–42. | DOI | MR | Zbl

[26] S. Walker, S. Hatjispyros and T. Nicoleris, A Fleming-Viot process and bayesian nonparametrics. Ann. Appl. Prob. 17 (2007) 67–80. | DOI | MR | Zbl

Cité par Sources :