This paper derives non-central asymptotic results for non-linear integral functionals of homogeneous isotropic Gaussian random fields defined on hypersurfaces in
Mots-clés : Non-central limit theorems, random field, long-range dependence, hermite-type distribution, sojourn measures
@article{PS_2020__24_1_315_0, author = {Olenko, Andriy and Vaskovych, Volodymyr}, title = {Non-central limit theorems for functionals of random fields on hypersurfaces}, journal = {ESAIM: Probability and Statistics}, pages = {315--340}, publisher = {EDP-Sciences}, volume = {24}, year = {2020}, doi = {10.1051/ps/2020006}, mrnumber = {4126979}, zbl = {1461.60036}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps/2020006/} }
TY - JOUR AU - Olenko, Andriy AU - Vaskovych, Volodymyr TI - Non-central limit theorems for functionals of random fields on hypersurfaces JO - ESAIM: Probability and Statistics PY - 2020 SP - 315 EP - 340 VL - 24 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2020006/ DO - 10.1051/ps/2020006 LA - en ID - PS_2020__24_1_315_0 ER -
%0 Journal Article %A Olenko, Andriy %A Vaskovych, Volodymyr %T Non-central limit theorems for functionals of random fields on hypersurfaces %J ESAIM: Probability and Statistics %D 2020 %P 315-340 %V 24 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2020006/ %R 10.1051/ps/2020006 %G en %F PS_2020__24_1_315_0
Olenko, Andriy; Vaskovych, Volodymyr. Non-central limit theorems for functionals of random fields on hypersurfaces. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 315-340. doi : 10.1051/ps/2020006. https://www.numdam.org/articles/10.1051/ps/2020006/
[1] Random Fields and Geometry. Springer, New York (2007). | MR | Zbl
and ,[2] On rate of convergence in non-central limit theorems. Bernoulli 25 (2019) 2920–2948. | MR | Zbl
, , and ,[3] On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields. ESAIM: P&S 14 (2010) 210–255. | DOI | Numdam | MR | Zbl
, and ,[4] Regular Variation. Cambridge University Press, Cambridge (1987). | DOI | MR | Zbl
, and ,[5] Sharp rate of average decay of the Fourier transform of a bounded set. Geom. Funct. Anal. 13 (2003) 671–680. | DOI | MR | Zbl
, and ,[6] Central limit theorems for the excursion set volumes of weakly dependent random fields. Bernoulli 18 (2012) 100–118. | DOI | MR | Zbl
, and ,[7] On the Lambert W function. Adv. Comput. Math. 5 (1996) 329–359. | DOI | MR | Zbl
, , , and ,[8] On distance in total variation between image measures. Stat. Probab. Lett. 129 (2017) 393–400. | DOI | MR | Zbl
,[9] Limit behavior of multiple stochastic integral, in Statistics and control of random process. Nauka, Moscow (1987) 55–57. | MR | Zbl
and ,[10] Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27–52. | DOI | MR | Zbl
and ,[11] Long-Range Dependence: Theory and Applications. Birkhäuser, Boston (2003). | MR
, and ,[12] Freiman theorem, Fourier transform and additive structure of measures. J. Aust. Math. Soc. 86 (2009) 97–109. | DOI | MR | Zbl
and ,[13] Decay of the Fourier Transform: Analytic and Geometric Aspects. Birkhäuser, Basel (2014). | DOI | MR
and ,[14] Multiple Wiener integral. J. Math. Soc. Japan 3 (1951) 157–169. | MR | Zbl
,[15] Statistical Analysis of Random Fields. Kluwer Academic Publishers, Dordrecht (1989). | DOI | MR | Zbl
and ,[16] Limit Theorems for Random Fields with Singular Spectrum. Kluwer Academic Publishers, Dordrecht (1999). | DOI | MR | Zbl
,[17] Tauberian and Abelian theorems for long-range dependent random fields. Methodol. Comput. Appl. Probab. 15 (2013) 715–742. | DOI | MR | Zbl
and ,[18] Sojourn measures of Student and Fisher-Snedecor random fields. Bernoulli 20 (2014) 1454–1483. | DOI | MR | Zbl
and ,[19] Increasing domain asymptotics for the first Minkowski functional of spherical random fields. Theory Probab. Math. Statist. 97 (2017) 120–141. | MR | Zbl
and ,[20] Rosenblatt distribution subordinated to Gaussian random fields with long-range dependence. Stoch. Anal. Appl. 35 (2017) 144–177. | DOI | MR | Zbl
, and ,[21] Multiple Wiener-Itô integrals. Springer, Berlin (1981). | DOI | MR | Zbl
,[22] Testing for non-Gaussianity on cosmic microwave background radiation: A review. Statist. Sci. 19 (2004) 294–307. | DOI | MR | Zbl
,[23] Convergence in total variation on Wiener chaos. Stoch. Process. Appl. 123 (2013) 651–674. | DOI | MR | Zbl
and ,[24] Multidimensional limit theorems for homogeneous sums: a survey and a general transfer principle. ESAIM: P&S 20 (2016) 293–308. | DOI | Numdam | MR | Zbl
, , and ,[25] On non-Gaussianity in the cosmic microwave background. Astronom. Astrophys. 364 (2000) 17–25.
, and ,[26] Limit theorems for weighted functionals of cyclical long-range dependent random fields. Stoch. Anal. Appl. 31 (2013) 199–213. | DOI | MR | Zbl
,[27] Wiener Chaos: Moments, Cumulants and Diagrams. A Survey with Computer Implementation. Springer, Berlin (2011). | MR | Zbl
and ,[28] Limit Theorems of Probability Theory. Oxford University Press, New York (1995). | MR | Zbl
,[29] Cauchy transform and rectifiability in Clifford analysis. Z. Anal. Anwendungen 24 (2005) 167–178. | DOI | MR | Zbl
and ,[30] Regularly Varying Functions. Springer-Verlag, Berlin (1976). | DOI | MR | Zbl
,[31] Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 (1975) 287–302. | DOI | MR | Zbl
,[32] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 (1979) 53–83. | DOI | MR | Zbl
,[33] Multivariate Geostatistics. Springer-Verlag, Berlin (1998). | DOI | Zbl
,[34] On distances between distributions of polynomials. Theory Stoch. Process. 22 (2017) 79–85. | MR | Zbl
,[35] The total variation distance between two double Wiener-Itô integrals. Stat. Probab. Lett. 83 (2013) 2160–2167. | DOI | MR | Zbl
,Cité par Sources :