Approximation of the invariant distribution for a class of ergodic jump diffusions
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 883-913.

In this article, we approximate the invariant distribution ν of an ergodic Jump Diffusion driven by the sum of a Brownian motion and a Compound Poisson process with sub-Gaussian jumps. We first construct an Euler discretization scheme with decreasing time steps. This scheme is similar to those introduced in Lamberton and Pagès Bernoulli 8 (2002) 367-405. for a Brownian diffusion and extended in F. Panloup, Ann. Appl. Probab. 18 (2008) 379-426. to a diffusion with Lévy jumps. We obtain a non-asymptotic quasi Gaussian (asymptotically Gaussian) concentration bound for the difference between the invariant distribution and the empirical distribution computed with the scheme of decreasing time step along appropriate test functions f such that fν(f) is a coboundary of the infinitesimal generator.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2020023
Classification : 60H35, 60G51, 60E15, 65C30
Mots-clés : Invariant distribution, diffusion processes, jump processes, inhomogeneous Markov chains, non-asymptotic Gaussian concentration
@article{PS_2020__24_1_883_0,
     author = {Gloter, A. and Honor\'e, I. and Loukianova, D.},
     title = {Approximation of the invariant distribution for a class of ergodic jump diffusions},
     journal = {ESAIM: Probability and Statistics},
     pages = {883--913},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2020023},
     mrnumber = {4178367},
     zbl = {1455.60091},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2020023/}
}
TY  - JOUR
AU  - Gloter, A.
AU  - Honoré, I.
AU  - Loukianova, D.
TI  - Approximation of the invariant distribution for a class of ergodic jump diffusions
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 883
EP  - 913
VL  - 24
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2020023/
DO  - 10.1051/ps/2020023
LA  - en
ID  - PS_2020__24_1_883_0
ER  - 
%0 Journal Article
%A Gloter, A.
%A Honoré, I.
%A Loukianova, D.
%T Approximation of the invariant distribution for a class of ergodic jump diffusions
%J ESAIM: Probability and Statistics
%D 2020
%P 883-913
%V 24
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2020023/
%R 10.1051/ps/2020023
%G en
%F PS_2020__24_1_883_0
Gloter, A.; Honoré, I.; Loukianova, D. Approximation of the invariant distribution for a class of ergodic jump diffusions. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 883-913. doi : 10.1051/ps/2020023. http://archive.numdam.org/articles/10.1051/ps/2020023/

[1] D. Appelbaum, Lévy Processes and Stochastic Calculus. Cambridge University Press (2009). | DOI | MR | Zbl

[2] D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators. Vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham (2014). | MR | Zbl

[3] N. Frikha and S. Menozzi, Concentration bounds for stochastic approximations. Electron. Commun. Probab. 17 (2012) 15. | MR | Zbl

[4] I. Honoré, S. Menozzi, and G. Pagès, Non-asymptotic Gaussian estimates for the recursive approximation of the invariant distribution of a diffusion. Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020) 1559–1605. | DOI | MR | Zbl

[5] I. Honoré. Sharp non-asymptotic concentration inequalities for the approximation of the invariant distribution of a diffusion. Stochastic Process. Appl. 130 (2020) 2127–2158. | DOI | MR | Zbl

[6] M. Johannes, The statistical and economic role of jumps in continuous-time interest rate models. J. Finance 59 (2004) 227–260. | DOI

[7] D. Lamberton and G. Pagès, Recursive computation of the invariant distribution of a diffusion. Bernoulli 8 (2002) 367–405. | MR | Zbl

[8] H Masuda, Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps. Stoch. Process. Appl. 117 (2007) 35–56. | DOI | MR | Zbl

[9] F. Malrieu and D. Talay, Concentration Inequalities for Euler Schemes, in Monte Carlo and Quasi-Monte Carlo Methods 2004, edited by H. Niederreiter and D. Talay. Springer, Berlin, Heidelberg (2006) 355–371. | DOI | MR | Zbl

[10] F. Panloup, Computation of the invariant measure of a Lévy driven SDE: rate of convergence. Stoch. Process. Appl. 118 (2008) 1351–1384. | DOI | MR | Zbl

[11] F. Panloup, Recursive computation of the invariant measure of a stochastic differential equation driven by a Lévy process. Ann. Appl. Probab. 18 (2008) 379–426. | DOI | MR | Zbl

[12] E. Priola. Pathwise uniqueness for singular SDEs driven by stable processes. Osaka J. Math. 49 (2012) 421–447. | MR | Zbl

[13] D. Talay, Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Processes Related Fields 8 (2002) 163–198. | MR | Zbl

[14] D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8 (1990) 94–120. | DOI | MR | Zbl

[15] G. Tauchen and H. Zhou, Realized jumps on financial markets and predicting credit spreads. J. Econometrics 160 (2011) 102–118. | DOI | MR | Zbl

Cité par Sources :