In this paper, we make use of the information measure introduced by Mokkadem (1997) for building a goodness-of-fit test for long-range dependent processes. Our test statistic is performed in the frequency domain and writes as a non linear functional of the normalized periodogram. We establish the asymptotic distribution of our statistic under the null hypothesis. Under specific alternative hypotheses, we prove that the power converges to one. The performance of our test procedure is illustrated from different simulated series. In particular, we compare its size and its power with test of Chen and Deo.
Mots-clés : goodness-of-fit test for spectral density, periodogram, long range dependence
@article{PS_2002__6__239_0, author = {Fay, Gilles and Philippe, Anne}, title = {Goodness-of-fit test for long range dependent processes}, journal = {ESAIM: Probability and Statistics}, pages = {239--258}, publisher = {EDP-Sciences}, volume = {6}, year = {2002}, doi = {10.1051/ps:2002013}, mrnumber = {1943149}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2002013/} }
TY - JOUR AU - Fay, Gilles AU - Philippe, Anne TI - Goodness-of-fit test for long range dependent processes JO - ESAIM: Probability and Statistics PY - 2002 SP - 239 EP - 258 VL - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2002013/ DO - 10.1051/ps:2002013 LA - en ID - PS_2002__6__239_0 ER -
Fay, Gilles; Philippe, Anne. Goodness-of-fit test for long range dependent processes. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 239-258. doi : 10.1051/ps:2002013. http://archive.numdam.org/articles/10.1051/ps:2002013/
[1] Goodness of fit tests for spectral distributions. Ann. Statist. 21 (1993) 830-847. | MR | Zbl
,[2] Generators of long-range dependent processes: A survey. Birkhäuser (2002). | MR | Zbl
, , , and ,[3] An introduction to stochastic processes. Cambridge University Press (1955). | MR | Zbl
,[4] Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65 (1970) 1509-1526. | MR | Zbl
and ,[5] Time Series: Theory and Methods. Springer-Verlag, Springer Ser. in Statistics (1991). | MR | Zbl
and ,[6] A generalized portmanteau goodness-of-fit test for time series models. Preprint (2000). | MR | Zbl
and ,[7] Théorèmes limites pour les fonctionnelles du périodogramme, Ph.D. Thesis. École Nationale Supérieure des Télécommunications (2000).
,[8] Non linear functionals of the periodogram (submitted). | Zbl
, and ,[9] The periodogram of an i.i.d. sequence. Stochastic Process. Appl. 92 (2001) 315-343. | MR | Zbl
and ,[10] Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986) 517-532. | MR | Zbl
and ,[11] A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittles's estimate. Probab. Theory Related Fields 86 (1990) 87-104. | Zbl
and ,[12] Statistical analysis of stationary time series. Wiley, New York (1957). | MR | Zbl
and ,[13] A limit theory for long-range dependence and statistical inference on related models. Ann. Statist. 25 (1997) 105-137. | MR | Zbl
,[14] The FEXP estimator for potentially non-stationary linear time series. Stochastic Process. Appl. 97 (2002) 307-340. | MR | Zbl
, and ,[15] An efficient taper for potentially overdifferenced long-memory time series. J. Time Ser. Anal. 21 (2000) 155-180. | MR | Zbl
and ,[16] Consistency for non-linear functions of the periodogram of tapered data. J. Time Ser. Anal. 16 (1995) 585-606. | MR | Zbl
and ,[17] The integrated periodogram for stable processes. Ann. Statist. 24 (1996) 1855-1879. | MR | Zbl
and ,[18] The integrated periodogram for long-memory processes with finite or infinite variance. Stochastic Process. Appl. 66 (1997) 55-78. | MR | Zbl
and ,[19] Discrimination between monotonic trends and long-range dependence. J. Appl. Probab. 23 (1986) 1025-1030. | MR | Zbl
,[20] Uniform convergence of the empirical spectral distribution function. Stochastic Process. Appl. 70 (1997) 85-114. | MR | Zbl
and ,[21] Une mesure d'information et son application à des tests pour les processus arma. C. R. Acad. Sci. Paris 319 (1994) 197-200. | Zbl
,[22] A measure of information and its applications to test for randomness against ARMA alternatives and to goodness-of-fit test. Stochastic Process. Appl. 72 (1997) 145-159. | MR | Zbl
,[23] On estimation of the integrals of certain functions of spectral density. J. Appl. Probab. 17 (1980) 73-83. | MR | Zbl
,[24] Non-stationary log-periodogram regression. J. Econom. 91 (1999) 325-371. | MR | Zbl
,[25] Asymptotic properties of estimates in incorrect ARMA models for long-memory time series, in New directions in time series analysis. Part II. Proc. Workshop, Minneapolis/MN (USA) 1990. Springer, New York, IMA Vol. Math. Appl. 46 (1993) 375-382. | MR | Zbl
,Cité par Sources :