About the linear-quadratic regulator problem under a fractional brownian perturbation
ESAIM: Probability and Statistics, Tome 7 (2003), pp. 161-170.

In this paper we solve the basic fractional analogue of the classical linear-quadratic gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.

DOI : 10.1051/ps:2003007
Classification : 93E20, 60G15, 60G44
Mots-clés : fractional brownian motion, linear system, optimal control, quadratic payoff
@article{PS_2003__7__161_0,
     author = {Kleptsyna, M. L. and Breton, Alain Le and Viot, M.},
     title = {About the linear-quadratic regulator problem under a fractional brownian perturbation},
     journal = {ESAIM: Probability and Statistics},
     pages = {161--170},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2003},
     doi = {10.1051/ps:2003007},
     mrnumber = {1956077},
     zbl = {1030.93059},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2003007/}
}
TY  - JOUR
AU  - Kleptsyna, M. L.
AU  - Breton, Alain Le
AU  - Viot, M.
TI  - About the linear-quadratic regulator problem under a fractional brownian perturbation
JO  - ESAIM: Probability and Statistics
PY  - 2003
SP  - 161
EP  - 170
VL  - 7
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2003007/
DO  - 10.1051/ps:2003007
LA  - en
ID  - PS_2003__7__161_0
ER  - 
%0 Journal Article
%A Kleptsyna, M. L.
%A Breton, Alain Le
%A Viot, M.
%T About the linear-quadratic regulator problem under a fractional brownian perturbation
%J ESAIM: Probability and Statistics
%D 2003
%P 161-170
%V 7
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2003007/
%R 10.1051/ps:2003007
%G en
%F PS_2003__7__161_0
Kleptsyna, M. L.; Breton, Alain Le; Viot, M. About the linear-quadratic regulator problem under a fractional brownian perturbation. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 161-170. doi : 10.1051/ps:2003007. http://archive.numdam.org/articles/10.1051/ps:2003007/

[1] M.H.A. Davis, Linear Estimation and Stochastic Control. Chapman and Hall (1977). | MR | Zbl

[2] L. Decreusefond and A.S. Üstünel, Stochastic analysis of the fractional Brownian motion. Potential Anal. 10 (1999) 177-214. | MR | Zbl

[3] T.E. Duncan, Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim. 38 (2000) 582-612. | MR | Zbl

[4] G. Gripenberg and I. Norros, On the prediction of fractional Brownian motion. J. Appl. Probab. 33 (1997) 400-410. | MR | Zbl

[5] Y. Hu, B. Øksendal and A. Sulem, A stochastic maximum principle for processes driven by fractional Brownian motion, Preprint 24. Pure Math. Dep. Oslo University (2000).

[6] M.L. Kleptsyna and A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Statist. Inference Stochastic Process. (to appear). | Zbl

[7] M.L. Kleptsyna and A. Le Breton, Extension of the Kalman-Bucy filter to elementary linear systems with fractional Brownian noises. Statist. Inference Stochastic Process. (to appear). | Zbl

[8] M.L. Kleptsyna, A. Le Breton and M.-C. Roubaud, General approach to filtering with fractional Brownian noises - Application to linear systems. Stochastics and Stochastics Rep. 71 (2000) 119-140. | Zbl

[9] M.L. Kleptsyna, A. Le Breton and M. Viot, Solution of some linear-quadratic regulator problem under a fractional Brownian perturbation and complete observation, in Prob. Theory and Math. Stat., Proc. of the 8th Vilnius Conference, edited by B. Grigelionis et al., VSP/TEV (to appear).

[10] R.S. Liptser and A.N. Shiryaev, Statistics of Random Processes. Springer-Verlag (1978). | Zbl

[11] I. Norros, E. Valkeila and J. Virtamo, An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli 5 (1999) 571-587. | MR | Zbl

[12] C.J. Nuzman and H.V. Poor, Linear estimation of self-similar processes via Lamperti's transformation. J. Appl. Probab. 37 (2000) 429-452. | MR | Zbl

Cité par Sources :