The LISDLG process denoted by
Mots-clés : LISDLG process, dilative stability, renormalization group, functional limit theorem, regularly varying function
@article{PS_2004__8__102_0, author = {Igl\'oi, Endre}, title = {Renormalization group of and convergence to the {LISDLG} process}, journal = {ESAIM: Probability and Statistics}, pages = {102--114}, publisher = {EDP-Sciences}, volume = {8}, year = {2004}, doi = {10.1051/ps:2004006}, mrnumber = {2085609}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps:2004006/} }
TY - JOUR AU - Iglói, Endre TI - Renormalization group of and convergence to the LISDLG process JO - ESAIM: Probability and Statistics PY - 2004 SP - 102 EP - 114 VL - 8 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps:2004006/ DO - 10.1051/ps:2004006 LA - en ID - PS_2004__8__102_0 ER -
Iglói, Endre. Renormalization group of and convergence to the LISDLG process. ESAIM: Probability and Statistics, Tome 8 (2004), pp. 102-114. doi : 10.1051/ps:2004006. https://www.numdam.org/articles/10.1051/ps:2004006/
[1] Regular Variation. Cambridge University Press, Cambridge (1987). | MR | Zbl
, and ,[2] Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27-52. | Zbl
and ,[3] Superposition of diffusions with linear generator and its multifractal limit process. ESAIM: PS 7 (2003) 23-86. | Numdam | Zbl
and ,[4] Shot noise distributions and selfdecomposability. Stoch. Anal. Appl. 21 (2003) 593-609. | Zbl
and ,[5] Infinitely divisible stochastic processes. Z. Wahrsch. Verw. Gebiete 7 (1967) 147-160. | Zbl
,[6] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 (1979) 53-83. | Zbl
,Cité par Sources :