Let be a -random walk and be a sequence of independent and identically distributed -valued random variables, independent of the random walk. Let be a measurable, symmetric function defined on with values in . We study the weak convergence of the sequence , with values in the set of right continuous real-valued functions with left limits, defined by
Mots-clés : random walk, random scenery, $U$-statistics, functional limit theorem
@article{PS_2005__9__98_0, author = {Guillotin-Plantard, Nadine and Ladret, V\'eronique}, title = {Limit theorems for {U-statistics} indexed by a one dimensional random walk}, journal = {ESAIM: Probability and Statistics}, pages = {98--115}, publisher = {EDP-Sciences}, volume = {9}, year = {2005}, doi = {10.1051/ps:2005004}, mrnumber = {2148962}, zbl = {1136.60316}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2005004/} }
TY - JOUR AU - Guillotin-Plantard, Nadine AU - Ladret, Véronique TI - Limit theorems for U-statistics indexed by a one dimensional random walk JO - ESAIM: Probability and Statistics PY - 2005 SP - 98 EP - 115 VL - 9 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2005004/ DO - 10.1051/ps:2005004 LA - en ID - PS_2005__9__98_0 ER -
%0 Journal Article %A Guillotin-Plantard, Nadine %A Ladret, Véronique %T Limit theorems for U-statistics indexed by a one dimensional random walk %J ESAIM: Probability and Statistics %D 2005 %P 98-115 %V 9 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps:2005004/ %R 10.1051/ps:2005004 %G en %F PS_2005__9__98_0
Guillotin-Plantard, Nadine; Ladret, Véronique. Limit theorems for U-statistics indexed by a one dimensional random walk. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 98-115. doi : 10.1051/ps:2005004. http://archive.numdam.org/articles/10.1051/ps:2005004/
[1] Strong laws for - and -statistics. Trans. Amer. Math. Soc. 348 (1996) 2845-2866. | Zbl
, , , , and ,[2] Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition. A Wiley-Interscience Publication (1999). | MR | Zbl
,[3] A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108-115. | Zbl
,[4] Local times for a class of Markoff processes. Illinois J. Math. 8 (1964) 19-39. | Zbl
,[5] A model of continuous polymers with random charges. J. Math. Phys. 38 (1997) 5143-5152. | Zbl
and ,[6] Functional limit theorems for -statistics indexed by a random walk. Stochastic Process. Appl. 101 (2002) 143-160. | Zbl
and ,[7] Mixing properties for random walk in random scenery. Ann. Probab. 16 (1988) 1788-1802. | Zbl
,[8] Weak bernoullicity of random walk in random scenery. Japan. J. Math. (N.S.) 29 (2003) 389-406. | Zbl
, , and ,[9] Mixing properties of the generalized -process. J. Anal. Math. 72 (1997) 165-202. | Zbl
and ,[10] Continuity of local times for Markov processes. Comp. Math. 24 (1972) 277-303. | Numdam | Zbl
and ,[11] The strong law of large numbers for -statistics. Univ. N. Carolina, Institue of Stat. Mimeo series 302 (1961).
,[12] A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25. | Zbl
and ,[13] -statistics. Theory and practice. Marcel Dekker, Inc., New York (1990). | MR | Zbl
,[14] Limit theorems related to a class of operator-self-similar processes. Nagoya Math. J. 142 (1996) 161-181. | Zbl
,[15] Thermodynamics of a Brownian bridge polymer model in a random environment. J. Phys. A 29 (1996) 1267-1279. | Zbl
and ,[16] Mixing properties of a class of skew-products. Israel J. Math. 19 (1974) 266-270. | Zbl
,[17] Continuous martingales and Brownian motion. Springer-Verlag, Berlin. Fundamental Principles of Mathematical Sciences 293 (1999). | MR | Zbl
and ,[18] Approximation theorems of mathematical statistics. John Wiley & Sons Inc., New York. Wiley Series in Probability and Mathematical Statistics (1980). | MR | Zbl
,[19] Principles of random walks. Springer-Verlag, New York, second edition. Graduate Texts in Mathematics 34 (1976). | MR | Zbl
,Cité par Sources :