Infinite system of brownian balls with interaction : the non-reversible case
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 55-79.

We consider an infinite system of hard balls in d undergoing brownian motions and submitted to a smooth pair potential. It is modelized by an infinite-dimensional stochastic differential equation with an infinite-dimensional local time term. Existence and uniqueness of a strong solution is proven for such an equation with fixed deterministic initial condition. We also show that Gibbs measures are reversible measures.

DOI : 10.1051/ps:2007006
Classification : 60H10, 60K35
Mots-clés : stochastic differential equation, local time, hard core potential, Gibbs measure, reversible measure
@article{PS_2007__11__55_0,
     author = {Fradon, Myriam and R{\oe}lly, Sylvie},
     title = {Infinite system of brownian balls with interaction : the non-reversible case},
     journal = {ESAIM: Probability and Statistics},
     pages = {55--79},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007006},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2007006/}
}
TY  - JOUR
AU  - Fradon, Myriam
AU  - Rœlly, Sylvie
TI  - Infinite system of brownian balls with interaction : the non-reversible case
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 55
EP  - 79
VL  - 11
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2007006/
DO  - 10.1051/ps:2007006
LA  - en
ID  - PS_2007__11__55_0
ER  - 
%0 Journal Article
%A Fradon, Myriam
%A Rœlly, Sylvie
%T Infinite system of brownian balls with interaction : the non-reversible case
%J ESAIM: Probability and Statistics
%D 2007
%P 55-79
%V 11
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2007006/
%R 10.1051/ps:2007006
%G en
%F PS_2007__11__55_0
Fradon, Myriam; Rœlly, Sylvie. Infinite system of brownian balls with interaction : the non-reversible case. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 55-79. doi : 10.1051/ps:2007006. http://archive.numdam.org/articles/10.1051/ps:2007006/

[1] R.L. Dobrushin, Gibbsian random fields. The general case. Functional Anal. Appl. 3 (1969) 22-28. | Zbl

[2] M. Fradon and S. Rœlly, Infinite dimensional diffusion processes with singular interaction. Bull. Sci. math. 124 (2000) 287-318. | Zbl

[3] J. Fritz, Gradient Dynamics of Infinite Points Systems. Ann Probab. 15 (1987) 478-514. | Zbl

[4] H.-O. Georgii, Canonical Gibbs measures. Lecture Notes in Mathematics 760, Springer-Verlag, Berlin (1979). | MR | Zbl

[5] R. Lang, Unendlich-dimensionale Wienerprozesse mit Wechselwirkung. Z. Wahrsch. Verw. Geb. 38 (1977) 55-72. | Zbl

[6] D. Ruelle, Superstable Interactions in Classical Statistical Mechanics. Comm. Math. Phys. 18 (1970) 127-159. | Zbl

[7] Y. Saisho and H. Tanaka, Stochastic Differential Equations for Mutually Reflecting Brownian Balls. Osaka J. Math. 23 (1986) 725-740. | Zbl

[8] H. Tanemura, A System of Infinitely Many Mutually Reflecting Brownian Balls. Probability Theory and Related Fields 104 (1996) 399-426. | Zbl

Cité par Sources :