Tail estimates for homogenization theorems in random media
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 51-69.

Consider a random environment in d given by i.i.d. conductances. In this work, we obtain tail estimates for the fluctuations about the mean for the following characteristics of the environment: the effective conductance between opposite faces of a cube, the diffusion matrices of periodized environments and the spectral gap of the random walk in a finite cube.

DOI : 10.1051/ps:2007036
Classification : 60K37, 35B27, 82B44
Mots-clés : periodic approximation, random environments, fluctuations, effective diffusion matrix, effective conductance, non-uniform ellipticity
@article{PS_2009__13__51_0,
     author = {Boivin, Daniel},
     title = {Tail estimates for homogenization theorems in random media},
     journal = {ESAIM: Probability and Statistics},
     pages = {51--69},
     publisher = {EDP-Sciences},
     volume = {13},
     year = {2009},
     doi = {10.1051/ps:2007036},
     mrnumber = {2493855},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2007036/}
}
TY  - JOUR
AU  - Boivin, Daniel
TI  - Tail estimates for homogenization theorems in random media
JO  - ESAIM: Probability and Statistics
PY  - 2009
SP  - 51
EP  - 69
VL  - 13
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2007036/
DO  - 10.1051/ps:2007036
LA  - en
ID  - PS_2009__13__51_0
ER  - 
%0 Journal Article
%A Boivin, Daniel
%T Tail estimates for homogenization theorems in random media
%J ESAIM: Probability and Statistics
%D 2009
%P 51-69
%V 13
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2007036/
%R 10.1051/ps:2007036
%G en
%F PS_2009__13__51_0
Boivin, Daniel. Tail estimates for homogenization theorems in random media. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 51-69. doi : 10.1051/ps:2007036. http://archive.numdam.org/articles/10.1051/ps:2007036/

[1] I. Benjamini and R. Rossignol, Submean variance bound for effective resistance on random electric networks. arXiv:math/0610393v4 [math.PR] | MR

[2] D. Boivin and J. Depauw, Spectral homogenization of reversible random walks on d in a random environment. Stochastic Process. Appl. 104 (2003) 29-56. | MR | Zbl

[3] D. Boivin and Y. Derriennic, The ergodic theorem for additive cocycles of d or d . Ergodic Theory Dynam. Syst. 11 (1991) 19-39. | MR | Zbl

[4] E. Bolthausen and A.S. Sznitman, Ten lectures on random media. DMV Seminar, Band 32, Birkhäuser (2002). | MR | Zbl

[5] A. Bourgeat and A. Piatnitski, Approximations of effective coefficients in stochastic homogenization. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 153-165. | Numdam | MR | Zbl

[6] P. Caputo and D. Ioffe, Finite volume approximation of the effective diffusion matrix: the case of independent bond disorder. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 505-525. | Numdam | MR | Zbl

[7] F.R.K. Chung, Spectral graph theory. CBMS Regional Conference Series in Mathematics, 92. American Mathematical Society (1997). | MR | Zbl

[8] E.B. Davies, Heat kernels and spectral theory. Cambridge Tracts in Mathematics, 92. Cambridge University Press (1989). | MR | Zbl

[9] T. Delmotte, Inéalité de Harnack elliptique sur les graphes. Colloq. Math. 72 (1997) 19-37. | MR | Zbl

[10] R. Durrett, Probability: Theory and Examples. Wadsworth & Brooks/Cole Statistics/Probability Series (1991). | MR | Zbl

[11] L.R.G. Fontes and P. Mathieu, On symmetric random walks with random conductances on d . Probab. Theory Related Fields 134 (2006) 565-602. | MR | Zbl

[12] T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau φ interface model. Commun. Math. Phys. 185 (1997) 1-36. | MR | Zbl

[13] G. Grimmett, Percolation. 2nd ed. Springer (1999). | MR | Zbl

[14] E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes Mathematics 5. American Mathematical Society (2000). | MR | Zbl

[15] B.D. Hughes, Random walks and random environments. Vol. 2. Random environments. Oxford University Press (1996). | MR | Zbl

[16] V.V. Jikov, S.M. Kozlov and O.A. Olejnik, Homogenization of differential operators and integral functionals. Springer-Verlag (1994). | MR | Zbl

[17] S. Kesavan, Homogenization of elliptic eigenvalue problems I. Appl. Math. Optimization 5 (1979) 153-167. | MR | Zbl

[18] H. Kesten, On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 (1993) 296-338. | MR | Zbl

[19] C. Kipnis and S.R.S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 10 (1986) 1-19. | MR | Zbl

[20] S.M. Kozlov, The method of averaging and walks in inhomogeneous environments. Russ. Math. Surv. 40 (1985) 73-145. | MR | Zbl

[21] R. Kuennemann, The diffusion limit for reversible jump processes on Z m with ergodic random bond conductivities. Commun. Math. Phys. 90 (1983) 27-68. | MR | Zbl

[22] H. Owhadi, Approximation of the effective conductivity of ergodic media by periodization. Probab. Theory Related Fields 125 (2003) 225-258. | MR | Zbl

[23] E. Pardoux and A.Yu. Veretennikov, On the Poisson equation and diffusion approximation. I. Ann. Probab. 29 (2001) 1061-1085. | MR | Zbl

[24] Y. Peres, Probability on trees: An introductory climb. Lectures on probability theory and statistics. École d'été de Probabilités de Saint-Flour XXVII-1997, Springer. Lect. Notes Math. 1717 (1999) 193-280 . | MR | Zbl

[25] L. Saloff-Coste, Lectures on finite Markov chains. Lectures on probability theory and statistics. École d'été de probabilités de Saint-Flour XXVI-1996, Springer. Lect. Notes Math. 1665 (1997) 301-413. | MR | Zbl

[26] V. Sidoravicius and A.-S. Sznitman, Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219-244. | MR | Zbl

[27] F. Spitzer, Principles of random walk. The University Series in Higher Mathematics. D. Van Nostrand Company (1964). | MR | Zbl

[28] J. Wehr, A lower bound on the variance of conductance in random resistor networks. J. Statist. Phys. 86 (1997) 1359-1365. | MR | Zbl

[29] V.V. Yurinsky, Averaging of symmetric diffusion in random medium. Sib. Math. J. 2 (1986) 603-613. | Zbl

Cité par Sources :