Plug-in estimators for higher-order transition densities in autoregression
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 135-151.

In this paper we obtain root-n consistency and functional central limit theorems in weighted L 1 -spaces for plug-in estimators of the two-step transition density in the classical stationary linear autoregressive model of order one, assuming essentially only that the innovation density has bounded variation. We also show that plugging in a properly weighted residual-based kernel estimator for the unknown innovation density improves on plugging in an unweighted residual-based kernel estimator. These weights are chosen to exploit the fact that the innovations have mean zero. If an efficient estimator for the autoregression parameter is used, then the weighted plug-in estimator for the two-step transition density is efficient. Our approach generalizes to invertible linear processes.

DOI : 10.1051/ps:2008001
Classification : 62M05, 62M10
Mots-clés : empirical likelihood, Owen estimator, least dispersed regular estimator, efficient influence function, stochastic expansion of residual-based kernel density estimator
@article{PS_2009__13__135_0,
     author = {Schick, Anton and Wefelmeyer, Wolfgang},
     title = {Plug-in estimators for higher-order transition densities in autoregression},
     journal = {ESAIM: Probability and Statistics},
     pages = {135--151},
     publisher = {EDP-Sciences},
     volume = {13},
     year = {2009},
     doi = {10.1051/ps:2008001},
     mrnumber = {2502027},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2008001/}
}
TY  - JOUR
AU  - Schick, Anton
AU  - Wefelmeyer, Wolfgang
TI  - Plug-in estimators for higher-order transition densities in autoregression
JO  - ESAIM: Probability and Statistics
PY  - 2009
SP  - 135
EP  - 151
VL  - 13
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2008001/
DO  - 10.1051/ps:2008001
LA  - en
ID  - PS_2009__13__135_0
ER  - 
%0 Journal Article
%A Schick, Anton
%A Wefelmeyer, Wolfgang
%T Plug-in estimators for higher-order transition densities in autoregression
%J ESAIM: Probability and Statistics
%D 2009
%P 135-151
%V 13
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2008001/
%R 10.1051/ps:2008001
%G en
%F PS_2009__13__135_0
Schick, Anton; Wefelmeyer, Wolfgang. Plug-in estimators for higher-order transition densities in autoregression. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 135-151. doi : 10.1051/ps:2008001. http://archive.numdam.org/articles/10.1051/ps:2008001/

[1] K.B. Athreya and G.S. Atuncar, Kernel estimation for real-valued Markov chains. Sankhyā Ser. A 60 (1998) 1-17. | MR | Zbl

[2] P.J. Bickel, C.A.J. Klaassen, Y. Ritov and J.A. Wellner, Efficient and Adaptive Estimation for Semiparametric Models. Springer, New York (1998). | MR | Zbl

[3] F.C. Drost, C.A.J. Klaassen and B.J.M. Werker, Adaptive estimation in time-series models. Ann. Statist. 25 (1997) 786-817. | MR | Zbl

[4] E.W. Frees, Estimating densities of functions of observations. J. Amer. Statist. Assoc. 89 (1994) 517-525. | MR | Zbl

[5] E. Giné and D. Mason, On local U-statistic processes and the estimation of densities of functions of several variables. Ann. Statist. 35 (2007a) 1105-1145. | MR | Zbl

[6] E. Giné and D. Mason, Laws of the iterated logarithm for the local U-statistic process. J. Theoret. Probab. 20 (2007b) 457-485. | MR | Zbl

[7] P. Jeganathan, Some aspects of asymptotic theory with applications to time series models. Econometric Theory 11 (1995) 818-887. | MR

[8] H.L. Koul and A. Schick, Efficient estimation in nonlinear autoregressive time series models. Bernoulli 3 (1997) 247-277. | MR | Zbl

[9] J.-P. Kreiss, On adaptive estimation in stationary ARMA processes. Ann. Statist. 1 (1987a) 112-133. | MR | Zbl

[10] J.-P. Kreiss, On adaptive estimation in autoregressive models when there are nuisance functions. Statist. Decisions 5 (1987b) 59-76. | MR | Zbl

[11] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 23, Springer, Berlin (1991). | MR | Zbl

[12] U.U. Müller, A. Schick and W. Wefelmeyer, Weighted residual-based density estimators for nonlinear autoregressive models. Statist. Sinica 15 (2005) 177-195. | MR | Zbl

[13] H.T. Nguyen, Recursive nonparametric estimation in stationary Markov processes. Publ. Inst. Statist. Univ. Paris 29 (1984) 65-84. | MR | Zbl

[14] A.B. Owen, Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 (1988) 237-249. | MR | Zbl

[15] A.B. Owen, Empirical Likelihood. Monographs on Statistics and Applied Probability 92, Chapman & Hall / CRC, London (2001). | Zbl

[16] G.G. Roussas, Nonparametric estimation in Markov processes. Ann. Inst. Statist. Math. 21 (1969) 73-87. | MR | Zbl

[17] G.G. Roussas, Nonparametric estimation in mixing sequences of random variables. J. Statist. Plann. Inference 18 (1988). 135-149. | MR | Zbl

[18] A. Saavedra and R. Cao, Rate of convergence of a convolution-type estimator of the marginal density of an MA(1) process. Stoch. Proc. Appl. 80 (1999) 129-155. | MR | Zbl

[19] A. Saavedra and R. Cao, On the estimation of the marginal density of a moving average process. Canad. J. Statist. 28 (2000) 799-815. | MR | Zbl

[20] A. Schick and W. Wefelmeyer, Root-n consistent and optimal density estimators for moving average processes. Scand. J. Statist. 31 (2004a) 63-78. | MR | Zbl

[21] A. Schick and W. Wefelmeyer, Root-n consistent density estimators for sums of independent random variables. J. Nonparametr. Statist. 16 (2004b) 925-935. | MR | Zbl

[22] A. Schick and W. Wefelmeyer, Functional convergence and optimality of plug-in estimators for stationary densities of moving average processes. Bernoulli 10 (2004c) 889-917. | MR | Zbl

[23] A. Schick and W. Wefelmeyer, Convergence rates in weighted L 1 -spaces of kernel density estimators for linear processes. Technical Report, Department of Mathematical Sciences, Binghamton University (2006). | Zbl

[24] A. Schick and W. Wefelmeyer, Uniformly root-n consistent density estimators for weakly dependent invertible linear processes. Ann. Statist. 35 (2007a) 815-843. | MR | Zbl

[25] A. Schick and W. Wefelmeyer, Root-n consistent density estimators of convolutions in weighted L 1 -norms. J. Statist. Plann. Inference 137 (2007b) 1765-1774. | MR | Zbl

[26] A. Schick and W. Wefelmeyer, Root-n consistency in weighted L 1 -spaces for density estimators of invertible linear processes. in: Stat. Inference Stoch. Process. 11 (2008) 281-310. | MR

Cité par Sources :