As in preceding papers in which we studied the limits of penalized 1-dimensional Wiener measures with certain functionals , we obtain here the existence of the limit, as , of -dimensional Wiener measures penalized by a function of the maximum up to time of the brownian winding process (for ), or in 2 dimensions for brownian motion prevented to exit a cone before time . Various extensions of these multidimensional penalisations are studied, and the limit laws are described. Throughout this paper, the skew-product decomposition of -dimensional brownian motion plays an important role.
Mots clés : skew-product decomposition, brownian windings, Dirichlet problem, spectral decomposition
@article{PS_2009__13__152_0, author = {Roynette, Bernard and Vallois, Pierre and Yor, Marc}, title = {Penalisations of multidimensional brownian motion, {VI}}, journal = {ESAIM: Probability and Statistics}, pages = {152--180}, publisher = {EDP-Sciences}, volume = {13}, year = {2009}, doi = {10.1051/ps:2008003}, mrnumber = {2518544}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2008003/} }
TY - JOUR AU - Roynette, Bernard AU - Vallois, Pierre AU - Yor, Marc TI - Penalisations of multidimensional brownian motion, VI JO - ESAIM: Probability and Statistics PY - 2009 SP - 152 EP - 180 VL - 13 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2008003/ DO - 10.1051/ps:2008003 LA - en ID - PS_2009__13__152_0 ER -
%0 Journal Article %A Roynette, Bernard %A Vallois, Pierre %A Yor, Marc %T Penalisations of multidimensional brownian motion, VI %J ESAIM: Probability and Statistics %D 2009 %P 152-180 %V 13 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps:2008003/ %R 10.1051/ps:2008003 %G en %F PS_2009__13__152_0
Roynette, Bernard; Vallois, Pierre; Yor, Marc. Penalisations of multidimensional brownian motion, VI. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 152-180. doi : 10.1051/ps:2008003. http://archive.numdam.org/articles/10.1051/ps:2008003/
[1] Le spectre d'une variété riemannienne. Lect. Notes Math. 194. Springer-Verlag, Berlin (1971). | MR | Zbl
, and ,[2] A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion. Ann. Probab. 10 (1982) 244-246. | MR | Zbl
,[3] Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition (1991). | MR | Zbl
and ,[4] Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, unabridged and corrected republication. | Zbl
,[5] Probabilités et potentiel. Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. XIV. Actualités Scientifiques et Industrielles, No. 1318. Hermann, Paris (1966). | MR | Zbl
,[6] The accuracy of Cauchy approximation for the windings of planar Brownian motion. Period. Math. Hungar. 41 (2000) 213-226. | MR | Zbl
and ,[7] Asymptotic laws of planar Brownian motion. Ann. Probab. 14 (1986) 733-779. | MR | Zbl
and ,[8] Further asymptotic laws of planar Brownian motion. Ann. Probab. 17 (1989) 965-1011. | MR | Zbl
and ,[9] Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition (1999). | MR | Zbl
and ,[10] Penalising Brownian paths. Lect. Notes Math. 1969. Springer-Verlag, Berlin (2009). | MR
and ,[11] Limiting laws for long Brownian bridges perturbed by their one-sided maximum, III. Period. Math. Hungar. 50 (2005) 247-280. | MR | Zbl
, and ,[12] Limiting laws associated with Brownian motion perturbed by normalized exponential weights I. Studia Sci. Math. Hungar. 43 (2006) 171-246. | MR | Zbl
, and .[13] Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, II. Studia Sci. Math. Hungar. 43 (2006) 295-360. | MR | Zbl
, and ,[14] Pénalisations et extensions du théorème de Pitman, relatives au mouvement brownien et à son maximum unilatère. In Séminaire de Probabilités, XXXIX (P.A. Meyer, in memoriam). Lect. Notes Math. 1874. Springer, Berlin (2006) 305-336. | MR | Zbl
, and ,[15] Some penalisations of the Wiener measure. Japan. J. Math. 1 (2006) 263-290. | MR | Zbl
, and ,[16] Some extensions of Pitman's and Ray-Knight's theorems for penalized Brownian motions and their local times, IV. Studia Sci. Math. Hungar. 44 (2007) 469-516. | MR | Zbl
, and ,[17] Penalizing a process () with a function of its local time at , V. Studia Sci. Math. Hungar. 45 (2008) 67-124. | MR | Zbl
, and ,[18] Penalizing a Brownian motion with a function of the lengths of its excursions, VII. Ann. Inst. H. Poincaré Probab. Statist. 45 (2009) 421-452. | Numdam | MR
, and ,[19] Some theorems concerning -dimensional Brownian motion. Trans. Am. Math. Soc. 87 (1958) 187-197. | MR | Zbl
,[20] Multidimensional diffusion processes. Classics in Mathematics. Springer-Verlag, Berlin, (2006). Reprint of the 1997 edition. | MR | Zbl
and ,[21] On time inversion of 1-dimensional diffusion processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 31 (1974/75) 115-124. | MR | Zbl
,Cité par Sources :