We propose some construction of enhanced gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using rough-path theory, we derive some Wong-Zakai Theorem.
Mots clés : gaussian processes, Volterra processes, rough path theory
@article{PS_2009__13__247_0, author = {Coutin, Laure and Victoir, Nicolas}, title = {Enhanced gaussian processes and applications}, journal = {ESAIM: Probability and Statistics}, pages = {247--260}, publisher = {EDP-Sciences}, volume = {13}, year = {2009}, doi = {10.1051/ps:2008007}, mrnumber = {2528082}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2008007/} }
TY - JOUR AU - Coutin, Laure AU - Victoir, Nicolas TI - Enhanced gaussian processes and applications JO - ESAIM: Probability and Statistics PY - 2009 SP - 247 EP - 260 VL - 13 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2008007/ DO - 10.1051/ps:2008007 LA - en ID - PS_2009__13__247_0 ER -
Coutin, Laure; Victoir, Nicolas. Enhanced gaussian processes and applications. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 247-260. doi : 10.1051/ps:2008007. http://archive.numdam.org/articles/10.1051/ps:2008007/
[1] Variation sur une formule de Paul Lévy. Ann. Inst. H. Poincaré 23 (1987) 359-377. | Numdam | MR | Zbl
and ,[2] On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984) 191-203. | MR | Zbl
,[3] Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 1049-1081. | Numdam | MR | Zbl
and[4] An introduction to (stochastic) calculus with respect to fractional Brownian motion, Séminaire de Probabilités XL, Lect. Notes Math. 1899 (2007) 3-65. Springer, Berlin. | MR | Zbl
,[5] Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Relat. Fields 122 (2002) 108-140. | MR | Zbl
and ,[6] Good rough path sequences and applications to anticipating calculus. Ann. Probab. 35 (2007) 1172-1193. | MR | Zbl
, and ,[7] Stochastic Integration with respect to Volterra processes. Ann. Inst. H. Poincaré 41 (2005) 123-149. | Numdam | MR | Zbl
,[8] Stochastic Analysis of the Fractional Brownian Motion. Potential Anal. 10 (1997) 177-214. | MR | Zbl
and ,[9] Régularité des trajectoires des fonctions aléatoires gaussiennes, École d'été de probabilités de Saint-Flour, 1974. Lect. Notes Math. 480 (1974) 1-96. | Zbl
,[10] Approximations of the Brownian rough path with applications to stochastic analysis. Ann. Inst. H. Poincaré 41 (2005) 703-724. | Numdam | MR | Zbl
and ,[11] Introduction to Rough Paths, Séminaire de probabilités XXXVII. Lect. Notes Math. 1832 (2003) 1-59. | MR | Zbl
,[12] Wiener's random function and other Laplacian random function, Proc. 2 Berkeley Symp. Math. Proba. (1950) 171-186, Univ. of California. | MR | Zbl
,[13] Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998) 215-310. | MR | Zbl
,[14] System Control and Rough Paths, Oxford University Press (2002). | MR | Zbl
and ,[15] Approximation of rough path of fractional Brownian motion, Seminar on Stochastic Analysis, Random Fields and Application V, Ascona 2005, Progr. Probab. 59. Birkhäuser Verlag (to appear) and arXiv math. PR/0509353. | MR | Zbl
and ,[16] Are classes of deterministic integrands for fractional Brownian motion on interval complete? Bernoulli 7 (2001) 873-897. | MR | Zbl
and ,Cité par Sources :