We are interested in the rate function of the moderate deviation principle for the two-sample matching problem. This is related to the determination of 1-Lipschitz functions with maximal variance. We give an exact solution for random variables which have normal law, or are uniformly distributed on the euclidean ball.
Mots-clés : matching problem, large deviations, variance, spectral gap, euclidean ball
@article{PS_2009__13__400_0, author = {Barthe, Franck and O{\textquoteright}Connell, Neil}, title = {Matchings and the variance of {Lipschitz} functions}, journal = {ESAIM: Probability and Statistics}, pages = {400--408}, publisher = {EDP-Sciences}, volume = {13}, year = {2009}, doi = {10.1051/ps:2008018}, mrnumber = {2554962}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2008018/} }
TY - JOUR AU - Barthe, Franck AU - O’Connell, Neil TI - Matchings and the variance of Lipschitz functions JO - ESAIM: Probability and Statistics PY - 2009 SP - 400 EP - 408 VL - 13 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2008018/ DO - 10.1051/ps:2008018 LA - en ID - PS_2009__13__400_0 ER -
Barthe, Franck; O’Connell, Neil. Matchings and the variance of Lipschitz functions. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 400-408. doi : 10.1051/ps:2008018. http://archive.numdam.org/articles/10.1051/ps:2008018/
[1] On optimal matchings. Combinatorica 4 (1984) 259-264. | Zbl
, and ,[2] Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1-28. | Zbl
and ,[3] The speed of mean Glivenko-Cantelli convergence. Ann. Math. Stat. 40 (1969) 40-50. | Zbl
,[4] Large and moderate deviations for matching problems and empirical discrepancies. Markov Process. Relat. Fields 13 (2007) 85-98. | Zbl
and ,[5] Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré, Probab. Statist. 28 (1992) 267-280. | Numdam | MR | Zbl
,[6] Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités, XXXIII, Lect. Notes Math. 1709 120-216. Springer, Berlin (1999). | Numdam | MR | Zbl
,[7] Spherical harmonics IV. Springer-Verlag, Berlin-Heidelberg-New York (1966). | MR | Zbl
,[8] Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the -sphere. J. Funct. Anal. 48 (1982) 252-283. | MR | Zbl
and ,[9] Probability Metrics and the Stability of Stochastic Models. Wiley (1991). | MR | Zbl
,[10] Random planar matching and bin packing, Ph.D. thesis, M.I.T., 1985.
,[11] Matching theorems and empirical discrepancy computations using majorizing measures. J. Amer. Math. Soc. 7 (1994) 455-537. | MR | Zbl
,[12] Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6 (1996) 587-600. | MR | Zbl
,[13] Large deviations, moderate deviations and LIL for empirical processes. Ann. Probab. 22 (1994) 17-27. | MR | Zbl
,Cité par Sources :