Transient random walk in 2 with stationary orientations
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 417-436.

In this paper, we extend a result of Campanino and Pétritis [Markov Process. Relat. Fields 9 (2003) 391-412]. We study a random walk in 2 with random orientations. We suppose that the orientation of the kth floor is given by ξ k , where (ξ k ) k is a stationary sequence of random variables. Once the environment fixed, the random walk can go either up or down or can stay in the present floor (but moving with respect to its orientation). This model was introduced by Campanino and Pétritis in [Markov Process. Relat. Fields 9 (2003) 391-412] when the (ξ k ) k is a sequence of independent identically distributed random variables. In [Theory Probab. Appl. 52 (2007) 815-826], Guillotin-Plantard and Le Ny extend this result to a situation where the orientations of the floors are independent but chosen with stationary probabilities (not equal to 0 and to 1). In the present paper, we generalize the result of [Markov Process. Relat. Fields 9 (2003) 391-412] to some cases when (ξ k ) k is stationary. Moreover we extend slightly a result of [Theory Probab. Appl. 52 (2007) 815-826].

DOI : 10.1051/ps:2008019
Classification : 60J10
Mots clés : transience, random walk, Markov chain, oriented graphs, stationary orientations
@article{PS_2009__13__417_0,
     author = {P\`ene, Fran\c{c}oise},
     title = {Transient random walk in ${\mathbb {Z}}^2$ with stationary orientations},
     journal = {ESAIM: Probability and Statistics},
     pages = {417--436},
     publisher = {EDP-Sciences},
     volume = {13},
     year = {2009},
     doi = {10.1051/ps:2008019},
     mrnumber = {2554964},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2008019/}
}
TY  - JOUR
AU  - Pène, Françoise
TI  - Transient random walk in ${\mathbb {Z}}^2$ with stationary orientations
JO  - ESAIM: Probability and Statistics
PY  - 2009
SP  - 417
EP  - 436
VL  - 13
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2008019/
DO  - 10.1051/ps:2008019
LA  - en
ID  - PS_2009__13__417_0
ER  - 
%0 Journal Article
%A Pène, Françoise
%T Transient random walk in ${\mathbb {Z}}^2$ with stationary orientations
%J ESAIM: Probability and Statistics
%D 2009
%P 417-436
%V 13
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2008019/
%R 10.1051/ps:2008019
%G en
%F PS_2009__13__417_0
Pène, Françoise. Transient random walk in ${\mathbb {Z}}^2$ with stationary orientations. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 417-436. doi : 10.1051/ps:2008019. http://archive.numdam.org/articles/10.1051/ps:2008019/

[1] L.A. Bunimovich and Ya.G. Sinai, Markov partitions for dispersed billiards. Commun. Math. Phys. 78 (1980) 247-280. | MR | Zbl

[2] L.A. Bunimovich and Ya.G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers. Commun. Math. Phys. 78 (1981) 479-497. | MR | Zbl

[3] L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. Russ. Math. Surv. 45 (1990) 105-152. | MR | Zbl

[4] L.A. Bunimovich, Ya.G. Sinai and N.I. Chernov, Statistical properties of two-dimensional hyperbolic billiards. Russ. Math. Surv. 46 (1991) 47-106. | MR | Zbl

[5] M. Campanino and D. Pétritis, Random walks on randomly oriented lattices. Markov Process. Relat. Fields 9 (2003) 391-412. | MR | Zbl

[6] N.I. Chernov, Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122 (2006) 1061-1094. | MR | Zbl

[7] G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes. Commun. Math. Phys. 38 (1974) 83-101. | MR | Zbl

[8] G. Grimmett, Percolation, second edition. Springer, Berlin (1999). | MR

[9] N. Guillotin-Plantard and A. Le Ny, Transient random walks on 2d-oriented lattices. Theory Probab. Appl. 52 (2007) 815-826. | Zbl

[10] B.D. Hughes, Random walks and random environments. Vol. 2: Random environments. Oxford Science Publications, Clarendon Press, Oxford. (1996) xxiv. | MR | Zbl

[11] I.A. Ibragimov, Some limit theorems for stationary processes. Th. Probab. Appl. 7 (1962) 349-382. | MR | Zbl

[12] C. Jan, Vitesse de convergence dans le TCL pour des chaînes de Markov et certains processus associés à des systèmes dynamiques. C. R. Acad. Sci. Paris Ser. I Math. 331 (2000) 395-398. | MR | Zbl

[13] C. Jan, Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires. Thèse, Université de Rennes 1, 2001.

[14] H. Kesten and F. Spitzer, A limit theorem related to a new class of self similar processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979) 5-25. | MR | Zbl

[15] S. Le Borgne, Exemples de systèmes dynamiques quasi-hyperboliques à décorrélations lentes. C. R. Acad. Sci. Paris Ser. I Math. 343 (2006) 125-128. | MR | Zbl

[16] S. Le Borgne and F. Pène, Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques. Bull. Soc. Math. France 133 (2005) 395-417. | Numdam | MR | Zbl

[17] Ya.G. Sinai, Dynamical systems with elastic reflections. Russ. Math. Surv. 25 (1970) 137-189. | Zbl

[18] F. Spitzer, Principles of random walk. Univ. Ser. Higher Math., Van Nostrand, Princeton (1964). | MR | Zbl

[19] L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147 (1998) 585-650. | MR | Zbl

Cité par Sources :