Penalized estimators for non linear inverse problems
ESAIM: Probability and Statistics, Tome 14 (2010), pp. 173-191.

In this article we tackle the problem of inverse non linear ill-posed problems from a statistical point of view. We discuss the problem of estimating an indirectly observed function, without prior knowledge of its regularity, based on noisy observations. For this we consider two approaches: one based on the Tikhonov regularization procedure, and another one based on model selection methods for both ordered and non ordered subsets. In each case we prove consistency of the estimators and show that their rate of convergence is optimal for the given estimation procedure.

DOI : 10.1051/ps:2008024
Classification : 60G17, 62G07
Mots clés : ill-posed inverse problems, Tikhonov estimator, projection estimator, penalized estimation, model selection
@article{PS_2010__14__173_0,
     author = {Loubes, Jean-Michel and Lude\~na, Carenne},
     title = {Penalized estimators for non linear inverse problems},
     journal = {ESAIM: Probability and Statistics},
     pages = {173--191},
     publisher = {EDP-Sciences},
     volume = {14},
     year = {2010},
     doi = {10.1051/ps:2008024},
     mrnumber = {2741964},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2008024/}
}
TY  - JOUR
AU  - Loubes, Jean-Michel
AU  - Ludeña, Carenne
TI  - Penalized estimators for non linear inverse problems
JO  - ESAIM: Probability and Statistics
PY  - 2010
SP  - 173
EP  - 191
VL  - 14
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2008024/
DO  - 10.1051/ps:2008024
LA  - en
ID  - PS_2010__14__173_0
ER  - 
%0 Journal Article
%A Loubes, Jean-Michel
%A Ludeña, Carenne
%T Penalized estimators for non linear inverse problems
%J ESAIM: Probability and Statistics
%D 2010
%P 173-191
%V 14
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2008024/
%R 10.1051/ps:2008024
%G en
%F PS_2010__14__173_0
Loubes, Jean-Michel; Ludeña, Carenne. Penalized estimators for non linear inverse problems. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 173-191. doi : 10.1051/ps:2008024. http://archive.numdam.org/articles/10.1051/ps:2008024/

[1] Y. Baraud, Model selection for regression on a fixed design. Probab. Theory Relat. Fields 117 (2000) 467-493. | Zbl

[2] L. Birgé and P. Massart, Minimal penalties for Gaussian model selection. Probab. Theory Relat. Fields. 138 (2007) 33-73. | Zbl

[3] N. Bissantz, T. Hohage and A. Munk, Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise. Inv. Prob. 20 (2004) 1773-1789. | Zbl

[4] N. Bissantz, T. Hohage, A. Munk and F. Ruymgaart, Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal. 45 (2007) 2610-2636.

[5] O. Bousquet, Concentration inequalities for sub-additive functions using the entropy method. Stoch. Inequalities Appl. 56 (2003) 213-247. | Zbl

[6] L. Cavalier, G.K. Golubev, D. Picard and A.B. Tsybakov, Oracle inequalities for inverse problems. Ann. Statist. 30 (2002) 843-874. Dedicated to the memory of Lucien Le Cam. | Zbl

[7] P. Chow and R. Khasminskii, Statistical approach to dynamical inverse problems. Commun. Math. Phys. 189 (1997) 521-531. | Zbl

[8] D. Donoho, Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal. 2 (1995) 101-126. | Zbl

[9] H. Engl, Regularization methods for solving inverse problems, in ICIAM 99 (Edinburgh), pp. 47-62. Oxford Univ. Press, Oxford (2000). | Zbl

[10] H. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems. Math. Appl. 375. Kluwer Academic Publishers Group, Dordrecht (1996). | Zbl

[11] F. Gamboa, New Bayesian methods for ill posed problems. Statist. Decisions 17 (1999) 315-337. | Zbl

[12] Q. Jin and U. Amato, A discrete scheme of Landweber iteration for solving nonlinear ill-posed problems. J. Math. Anal. Appl. 253 (2001) 187-203. | Zbl

[13] J. Kalifa and S. Mallat, Thresholding estimators for linear inverse problems and deconvolutions. Ann. Statist. 31 (2003) 58-109. | Zbl

[14] B. Kaltenbacher, Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems. Inv. Prob. 16 (2000) 1523-1539. | Zbl

[15] J.-M. Loubes and C. Ludena, Adaptive complexity regularization for inverse problems. Electron. J. Statist. 2 (2008) 661-677.

[16] B. Mair and F. Ruymgaart, Statistical inverse estimation in Hilbert scales. SIAM J. Appl. Math. 56 (1996) 1424-1444. | Zbl

[17] A. Neubauer, Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales. Appl. Anal. 46 (1992) 59-72. | Zbl

[18] F. O'Sullivan, Convergence characteristics of methods of regularization estimators for nonlinear operator equations. SIAM J. Numer. Anal. 27 (1990) 1635-1649. | Zbl

[19] R. Snieder, An extension of Backus-Gilbert theory to nonlinear inverse problems. Inv. Prob. 7 (1991) 409-433. | Zbl

[20] U. Tautenhahn and Qi-nian Jin, Tikhonov regularization and a posteriori rules for solving nonlinear ill posed problems. Inv. Prob. 19 (2003) 1-21. | Zbl

[21] A.N. Tikhonov, A.S. Leonov and A.G. Yagola, Nonlinear ill-posed problems, volumes 1 and 2. Appl. Math. Math. Comput. 14. Chapman & Hall, London (1998). Translated from the Russian. | Zbl

Cité par Sources :