Local limit theorems for brownian additive functionals and penalisation of brownian paths, IX
ESAIM: Probability and Statistics, Tome 14 (2010), pp. 65-92.

We obtain a local limit theorem for the laws of a class of brownian additive functionals and we apply this result to a penalisation problem. We study precisely the case of the additive functional: (A t - := 0 t 1 X s <0 ds,t0). On the other hand, we describe Feynman-Kac type penalisation results for long brownian bridges thus completing some similar previous study for standard brownian motion (see [B. Roynette, P. Vallois and M. Yor, Studia Sci. Math. Hung. 43 (2006) 171-246]).

DOI : 10.1051/ps:2008028
Classification : 60F17, 60G44, 60J25, 60J35, 60J55, 60J57, 60J60, 60J65
Mots-clés : limit theorems for additive functionals, Feynman-Kac functionals, long brownian bridges
@article{PS_2010__14__65_0,
     author = {Roynette, Bernard and Yor, Marc},
     title = {Local limit theorems for brownian additive functionals and penalisation of brownian paths, {IX}},
     journal = {ESAIM: Probability and Statistics},
     pages = {65--92},
     publisher = {EDP-Sciences},
     volume = {14},
     year = {2010},
     doi = {10.1051/ps:2008028},
     mrnumber = {2654548},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2008028/}
}
TY  - JOUR
AU  - Roynette, Bernard
AU  - Yor, Marc
TI  - Local limit theorems for brownian additive functionals and penalisation of brownian paths, IX
JO  - ESAIM: Probability and Statistics
PY  - 2010
SP  - 65
EP  - 92
VL  - 14
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2008028/
DO  - 10.1051/ps:2008028
LA  - en
ID  - PS_2010__14__65_0
ER  - 
%0 Journal Article
%A Roynette, Bernard
%A Yor, Marc
%T Local limit theorems for brownian additive functionals and penalisation of brownian paths, IX
%J ESAIM: Probability and Statistics
%D 2010
%P 65-92
%V 14
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2008028/
%R 10.1051/ps:2008028
%G en
%F PS_2010__14__65_0
Roynette, Bernard; Yor, Marc. Local limit theorems for brownian additive functionals and penalisation of brownian paths, IX. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 65-92. doi : 10.1051/ps:2008028. http://archive.numdam.org/articles/10.1051/ps:2008028/

[1] W. Feller, An introduction to probability theory and its applications, volume II. John Wiley & Sons Inc., New York (1966). | Zbl

[2] Y. Hariya and M. Yor, Limiting distributions associated with moments of exponential Brownian functionals. Studia Sci. Math. Hung. 41 (2004) 193-242. | Zbl

[3] T. Jeulin, Semimartingales et grossissement d'une filtration. Lect. Notes Maths 833. Springer (1980). | Zbl

[4] T. Jeulin and M. Yor, Eds., Grossissements de filtrations: exemples et applications. Lect. Notes Maths 1118. Springer (1985). | Zbl

[5] I. Karatzas and S. Shreve, Brownian motion and Stochastic Calculus. Springer (1991). | Zbl

[6] S. Kotani, Asymptotics for expectations of multiplicative functionals of 1-dimensional Brownian motion. Preprint (2006).

[7] N.N. Lebedev, Special functions and their applications. Dover (1972). | Zbl

[8] R. Mansuy and M. Yor, Random Times and Enlargement of Filtrations in a Brownian Setting. Lect. Notes Maths 1873. Springer (2006). | Zbl

[9] J. Najnudel, B. Roynette and M. Yor, A global view of Brownian penalisations. MSJ Memoirs, volume 19. Mathematical Society of Japan, Tokyo (2009). | Zbl

[10] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Third edition. Springer (1999). | Zbl

[11] B. Roynette and M. Yor, Penalising Brownian paths. Lect. Notes Maths 1969. Springer (2009). | Zbl

[12] B. Roynette, P. Vallois and M. Yor, Penalisation of a Brownian motion with drift by a function of its one-sided maximum and its position, III. Periodica Math. Hung. 50 (2005) 247-280. | Zbl

[13] B. Roynette, P. Vallois and M. Yor, Some penalisations of the Wiener measure. Japan J. Math. 1 (2006) 263-299. | Zbl

[14] B. Roynette, P. Vallois and M. Yor, Limiting laws associated with Brownian motion perturbed by normalized exponential weights. Studia Sci. Math. Hung. 43 (2006) 171-246. | Zbl

[15] B. Roynette, P. Vallois and M. Yor, Limiting laws associated with Brownian motions perturbed by its maximum, minimum, and local time, II. Studia Sci. Math. Hung. 43 (2006) 295-360. | Zbl

[16] M. Yor, The distribution of Brownian quantiles. J. Appl. Prob. 32 (1995) 405-416. | Zbl

Cité par Sources :