Steady state and scaling limit for a traffic congestion model
ESAIM: Probability and Statistics, Tome 14 (2010), pp. 271-285.

In a general model (AIMD) of transmission control protocol (TCP) used in internet traffic congestion management, the time dependent data flow vector x(t) > 0 undergoes a biased random walk on two distinct scales. The amount of data of each component xi(t) goes up to xi(t)+a with probability 1-ζi(x) on a unit scale or down to γxi(t), 0 < γ < 1 with probability ζi(x) on a logarithmic scale, where ζi depends on the joint state of the system x. We investigate the long time behavior, mean field limit, and the one particle case. According to c = lim inf|x|→∞ |x|ζi(x) , the process drifts to ∞ in the subcritical c < c+(n, γ) case and has an invariant probability measure in the supercritical case c > c+(n, γ). Additionally, a scaling limit is proved when ζi(x) and a are of order N-1 and tNt, in the form of a continuum model with jump rate α(x).

DOI : 10.1051/ps:2008029
Classification : 60K30, 60J25, 90B20
Mots-clés : TCP, AIMD, fluid limit, mean field interaction
@article{PS_2010__14__271_0,
     author = {Grigorescu, Ilie and Kang, Min},
     title = {Steady state and scaling limit for a traffic congestion model},
     journal = {ESAIM: Probability and Statistics},
     pages = {271--285},
     publisher = {EDP-Sciences},
     volume = {14},
     year = {2010},
     doi = {10.1051/ps:2008029},
     mrnumber = {2779484},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2008029/}
}
TY  - JOUR
AU  - Grigorescu, Ilie
AU  - Kang, Min
TI  - Steady state and scaling limit for a traffic congestion model
JO  - ESAIM: Probability and Statistics
PY  - 2010
SP  - 271
EP  - 285
VL  - 14
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2008029/
DO  - 10.1051/ps:2008029
LA  - en
ID  - PS_2010__14__271_0
ER  - 
%0 Journal Article
%A Grigorescu, Ilie
%A Kang, Min
%T Steady state and scaling limit for a traffic congestion model
%J ESAIM: Probability and Statistics
%D 2010
%P 271-285
%V 14
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2008029/
%R 10.1051/ps:2008029
%G en
%F PS_2010__14__271_0
Grigorescu, Ilie; Kang, Min. Steady state and scaling limit for a traffic congestion model. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 271-285. doi : 10.1051/ps:2008029. http://archive.numdam.org/articles/10.1051/ps:2008029/

[1] G. Appenzeller, I. Keslassy and N. Mckeown, Sizing router buffer. In Proc. of the 2004 Conf. on Applications, Technologies, Architectures, and Protocols for Computers Communications, Portland, OR, USA. ACM New York, NY (2004), pp. 281-292.

[2] F. Baccelli, D. Mcdonald and J. Reynier, A mean-field model for multiple TCP connections through a buffer implementing RED. Performance Evaluation Archive 49 (2002) 77-97.

[3] F. Baccelli, A. Chaintreau, D. De Vleeschauwer and D. Mcdonald, A mean-field analysis of short lived interacting TCP flows. In Proc. of the Joint Int. Conf. on Measurement and Modeling of Computer Systems, New York, NY, USA, June 10-14, 2004 (SIGMETRICS '04/Performance '04). ACM New York, NY (2004), pp. 343-354.

[4] P. Billingsley, Convergence of Probability Measures. Wiley Series in Probability and Statistics, New York (1999). Ch. 3, pp. 109-153 or more precisely, Ch. 3.15, pp. 123-136. | Zbl

[5] H. Cai and D.Y. Eun, Stability of Network Congestion Control with Asynchronous Updates. In Proc. IEEE CDC 2006, San Diego, CA (2006).

[6] A. Dhamdere and C. Dovrolis, Open issues in router-buffer sizing. ACM SIGCOMM Comput. Commun. Rev. 36. ACM New York, NY (2006) 87-92.

[7] M. Duflo, Random iterative models. Volume 34 of Applications of Mathematics (New York). Springer-Verlag, Berlin (1997). | Zbl

[8] V. Dumas, F. Guilleaumin and P. Robert, A Markovian analysis of Additive-Increase Multiplicative-Decrease (AIMD) algorithms. Adv. Appl. Probab. 34 (2002) 85-111. | Zbl

[9] D.Y. Eun, On the limitation of fluid-based approach for internet congestion control. In Proc. IEEE Int. Conf. on Computer Communications and Networks, ICCCN, San Diego, CA, USA. J. Telecommun. Syst. 34 (2007) 3-11.

[10] D.Y. Eun, Fluid approximation of a Markov chain for TCP/AQM with many flows. Preprint.

[11] I. Grigorescu and M. Kang, Hydrodynamic Limit for a Fleming-Viot Type System. Stoch. Process. Appl. 110 (2004) 111-143. | Zbl

[12] I. Grigorescu and M. Kang, Tagged particle limit for a Fleming-Viot type system. Electron. J. Probab. 11 (2006) 311-331 (electronic). | Zbl

[13] I. Grigorescu and M. Kang, Recurrence and ergodicity for a continuous AIMD model. Preprint.

[14] F. Guillemin, P. Robert and B. Zwart, AIMD algorithms and exponential functionals. Ann. Appl. Probab. 14 (2004) 90-117. | Zbl

[15] J.K. Hale, Ordinary Differential Equations. Wiley-Interscience, New York (1969). | Zbl

[16] C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems. Springer-Verlag, New York (1999). | Zbl

[17] K. Maulik and B. Zwart, An extension of the square root law of TCP. Ann. Oper. Res. 170 (2009) 217-232. | Zbl

[18] S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag, London, Ltd. (1993). | Zbl

[19] T.J. Ott and J. Swanson, Asymptotic behavior of a generalized TCP congestion avoidance algorithm. J. Appl. Probab. 44 (2007) 618-635.

Cité par Sources :