We discuss the problem of computing points of I Rn whose convex hull contains the euclidean ball, and is contained in a small multiple of it. Given a polytope containing the euclidean ball, we introduce its successor obtained by intersection with all tangent spaces to the euclidean ball, whose normals point towards the vertices of the polytope. Starting from the L∞ ball, we discuss the computation of the two first successors, and give a complete analysis in the case when n=6.
Mots-clés : polyhedral approximation, convex hull, invariance by a group of transformations, canonical cuts, reduction
@article{RO_2010__44_1_45_0, author = {Fr\'ed\'eric Bonnans, J. and Lebelle, Marc}, title = {Explicit polyhedral approximation of the euclidean ball}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {45--59}, publisher = {EDP-Sciences}, volume = {44}, number = {1}, year = {2010}, doi = {10.1051/ro/2010003}, mrnumber = {2642915}, zbl = {1188.90167}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2010003/} }
TY - JOUR AU - Frédéric Bonnans, J. AU - Lebelle, Marc TI - Explicit polyhedral approximation of the euclidean ball JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2010 SP - 45 EP - 59 VL - 44 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2010003/ DO - 10.1051/ro/2010003 LA - en ID - RO_2010__44_1_45_0 ER -
%0 Journal Article %A Frédéric Bonnans, J. %A Lebelle, Marc %T Explicit polyhedral approximation of the euclidean ball %J RAIRO - Operations Research - Recherche Opérationnelle %D 2010 %P 45-59 %V 44 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2010003/ %R 10.1051/ro/2010003 %G en %F RO_2010__44_1_45_0
Frédéric Bonnans, J.; Lebelle, Marc. Explicit polyhedral approximation of the euclidean ball. RAIRO - Operations Research - Recherche Opérationnelle, Tome 44 (2010) no. 1, pp. 45-59. doi : 10.1051/ro/2010003. http://archive.numdam.org/articles/10.1051/ro/2010003/
[1] Theory of linear and integer programming. Wiley (1986). | Zbl
,[2] The quickhull algorithm for convex hulls. ACM Trans. Math. Software 22 (1996) 469-483. | Zbl
, and ,[3] On polyhedral approximations of the second-order cone. Math. Oper. Res. 26 (2001) 193-205. | Zbl
and ,[4] Optimisation continue. Dunod, Paris (2006).
,[5] Computational experiments with a linear approximation of second-order cone optimization. Faculté Polytechnique de Mons (2000).
,[6] Les boules. Quadrature (2004).
and ,[7] Integer and combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York (1999). Reprint of the 1988 original, A Wiley-Interscience Publication. | Zbl
and ,[8] Optimization, Handbooks in Operations Research and Management Science, Vol. 1, North-Holland, Amsterdam (1989). | Zbl
, and , editors.Cité par Sources :