Decomposition of large-scale stochastic optimal control problems
RAIRO - Operations Research - Recherche Opérationnelle, Tome 44 (2010) no. 3, pp. 167-183.

In this paper, we present an Uzawa-based heuristic that is adapted to certain type of stochastic optimal control problems. More precisely, we consider dynamical systems that can be divided into small-scale subsystems linked through a static almost sure coupling constraint at each time step. This type of problem is common in production/portfolio management where subsystems are, for instance, power units, and one has to supply a stochastic power demand at each time step. We outline the framework of our approach and present promising numerical results on a simplified power management problem.

DOI : 10.1051/ro/2010013
Classification : 93E20, 49M27, 49L20
Mots-clés : stochastic optimal control, decomposition methods, dynamic programming
@article{RO_2010__44_3_167_0,
     author = {Barty, Kengy and Carpentier, Pierre and Girardeau, Pierre},
     title = {Decomposition of large-scale stochastic optimal control problems},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {167--183},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {3},
     year = {2010},
     doi = {10.1051/ro/2010013},
     mrnumber = {2762792},
     zbl = {1204.93128},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2010013/}
}
TY  - JOUR
AU  - Barty, Kengy
AU  - Carpentier, Pierre
AU  - Girardeau, Pierre
TI  - Decomposition of large-scale stochastic optimal control problems
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2010
SP  - 167
EP  - 183
VL  - 44
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2010013/
DO  - 10.1051/ro/2010013
LA  - en
ID  - RO_2010__44_3_167_0
ER  - 
%0 Journal Article
%A Barty, Kengy
%A Carpentier, Pierre
%A Girardeau, Pierre
%T Decomposition of large-scale stochastic optimal control problems
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2010
%P 167-183
%V 44
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2010013/
%R 10.1051/ro/2010013
%G en
%F RO_2010__44_3_167_0
Barty, Kengy; Carpentier, Pierre; Girardeau, Pierre. Decomposition of large-scale stochastic optimal control problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 44 (2010) no. 3, pp. 167-183. doi : 10.1051/ro/2010013. http://archive.numdam.org/articles/10.1051/ro/2010013/

[1] K.J. Arrow, L. Hurwicz and H. Uzawa, Studies in linear and nonlinear programming. Stanford University Press (1958). | Zbl

[2] Z. Artstein, Sensitivity to σ-fields of information in stochastic allocation. Stoch. Stoch. Rep. 36 (1991) 41-63. | Zbl

[3] R. Bellman and S.E. Dreyfus, Functional approximations and dynamic programming. Math. Tables Other Aides comput. 13 (1959) 247-251. | Zbl

[4] R. Bellman, Dynamic programming, Princeton University Press. New Jersey (1957). | Zbl

[5] D.P. Bertsekas, Dynamic programming and optimal control, 2nd edition, Vol. 1 & 2, Athena Scientific (2000). | Zbl

[6] K. Barty, J.-S. Roy and C. Strugarek, A stochastic gradient type algorithm for closed loop problems. Math. Program. (2007). | Zbl

[7] J. Blomvall and A. Shapiro, Solving multistage asset investment problems by the sample average approximation method. Math. Program. 108 (2006) 571-595. | Zbl

[8] D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific (1996). | Zbl

[9] G. Cohen and J.-C. Culioli, Decomposition Coordination Algorithms for Stochastic Optimization. SIAM J. Control Optim. 28 (1990) 1372-1403. | Zbl

[10] G. Cohen, Auxiliary Problem Principle and decomposition of optimization problems. J. Optim. Theory Appl. (1980) 277-305. | Zbl

[11] J.M. Danskin, The theory of max-min. Springer, Berlin (1967).

[12] D.P. De Farias and B. Van Roy, The Linear Programming Approach to Approximate Dynamic Programming. Oper. Res. 51 (2003) 850-856. | Zbl

[13] I. Ekeland and R. Temam, Convex analysis and variational problems. SIAM, Philadelphia (1999). | Zbl

[14] P. Girardeau, A comparison of sample-based Stochastic Optimal Control methods. E-print available at: arXiv:1002.1812v1, 2010.

[15] H. Heitsch, W. Römisch and C. Strugarek, Stability of multistage stochastic programs. SIAM J. Optim. 17 (2006) 511-525. | Zbl

[16] J.L. Higle and S. Sen, Stochastic decomposition. Kluwer, Dordrecht (1996). | Zbl

[17] T. Pennanen, Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30 (2005) 245-256. | Zbl

[18] A. Prékopa, Stochastic programming, Kluwer, Dordrecht (1995). | Zbl

[19] A. Shapiro, On complexity of multistage stochastic programs. Oper. Res. Lett. 34 (2006) 1-8. | Zbl

[20] A. Shapiro and A. Ruszczynski (Eds.), Stochastic Programming, Elsevier, Amsterdam (2003). | Zbl

[21] C. Strugarek, Approches variationnelles et autres contributions en optimisation stochastique, Thèse de doctorat, École Nationale des Ponts et Chaussées, 5 (2006). | Zbl

[22] A. Turgeon, Optimal operation of multi-reservoir power systems with stochastic inflows. Water Resour. Res. 16 (1980) 275-283.

[23] J.N. Tstsiklis and B. Van Roy, Feature-based methods for large scale dynamic programming. Mach. Lear. 22 (1996) 59-94. | Zbl

Cité par Sources :