Given a simple undirected weighted or unweighted graph, we try to cluster the vertex set into communities and also to quantify the robustness of these clusters. For that task, we propose a new method, called bootstrap clustering which consists in (i) defining a new clustering algorithm for graphs, (ii) building a set of graphs similar to the initial one, (iii) applying the clustering method to each of them, making a profile (set) of partitions, (iv) computing a consensus partition for this profile, which is the final graph partitioning. This allows to evaluate the robustness of a cluster as the average percentage of partitions in the profile joining its element pairs ; this notion can be extended to partitions. Doing so, the initial and consensus partitions can be compared. A simulation protocol, based on random graphs structured in communities is designed to evaluate the efficiency of the Bootstrap Clustering approach.
Mots-clés : graph partitioning, clustering, modularity, consensus of partitions, bootstrap
@article{RO_2011__45_4_339_0, author = {Gambette, Philippe and Gu\'enoche, Alain}, title = {Bootstrap clustering for graph partitioning}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {339--352}, publisher = {EDP-Sciences}, volume = {45}, number = {4}, year = {2011}, doi = {10.1051/ro/2012001}, mrnumber = {2935706}, zbl = {1238.05116}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2012001/} }
TY - JOUR AU - Gambette, Philippe AU - Guénoche, Alain TI - Bootstrap clustering for graph partitioning JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2011 SP - 339 EP - 352 VL - 45 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2012001/ DO - 10.1051/ro/2012001 LA - en ID - RO_2011__45_4_339_0 ER -
%0 Journal Article %A Gambette, Philippe %A Guénoche, Alain %T Bootstrap clustering for graph partitioning %J RAIRO - Operations Research - Recherche Opérationnelle %D 2011 %P 339-352 %V 45 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2012001/ %R 10.1051/ro/2012001 %G en %F RO_2011__45_4_339_0
Gambette, Philippe; Guénoche, Alain. Bootstrap clustering for graph partitioning. RAIRO - Operations Research - Recherche Opérationnelle, Tome 45 (2011) no. 4, pp. 339-352. doi : 10.1051/ro/2012001. http://archive.numdam.org/articles/10.1051/ro/2012001/
[1] Column generation algorithms for exact modularity maximization in networks. Phys. Rev. E 82 (2010) 046112.
, , , , and ,[2] Two local dissimilarity measures for weighted graph with application to biological networks. Adv. Data Anal. Classif. 2 (2008) 3-16. | MR | Zbl
, , and ,[3] The median procedure for partitions. DIMACS series in Discrete Mathematics and Theoretical Computer Science 19 (1995) 3-34. | MR | Zbl
and ,[4] Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. (2008) P10008.
, , and ,[5] On modularity - NP-completeness and beyond. Proceedings of WG 2007. Lett. Notes Comput. Sci. 4769 (2007) 121-132. | Zbl
, , , , , and ,[6] Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Gen. Res. 16 (2006) 542-549.
and ,[7] Bootstrap methods and their application. Cambridge University Press (1997). | MR | Zbl
and ,[8] Measures of the amount of ecologic association between species. Ecology 26 (1945) 297-302.
,[9] Community detection in complex networks using extremal optimization. Phys. Rev. E 72 (2005) 027104.
and ,[10] Inferring Phylogenies. Sunderland (MA), Sinauer Associates Inc. (2003).
,[11] Community detection in graphs. Phys. Rep. 486 (2010) 75-174.
,[12] Comparison of algorithms in graph partitioning. RAIRO 42 (2008) 469-484. | Zbl
,[13] Consensus of partitions : a constructive approach. Adv. Data Anal. Classif. 5 (2011) 215-229. | Zbl
,[14] Comparing partitions, J. Classif. 2 (1985) 193-218. | Zbl
and ,[15] Bootstrap technique in cluster analysis. Pattern Recogn. 20 (1987) 547-568.
and ,[16] Modularity and community structure in networks. PNAS 103 (2006) 8577-8582.
,[17] Finding and evaluating community structure in networks. Phys. Rev. E 69 (2004) 026133.
and ,[18] Multi-level algorithms for modularity clustering, Proceedings of SEA'2009, edited by J. Vahrenhold. Lett. Notes Comput. Sci. 5526 (2009) 257-268.
and ,[19] Sur quelques aspects mathématiques des problèmes de classification automatique. I.C.C. Bulletin 4 (1965) 175-191. Reprint, Math. Sci. Hum. 82 (1983) 13-29.
,[20] Approximating symmetric relations by equivalence relations. SIAM J. Appl. Math. 12 (1964) 840-847. | MR | Zbl
,Cité par Sources :