The paper focuses on multi-criteria problems. It presents the interactive compromise hypersphere method with sensitivity analysis as a decision tool in multi-objective programming problems. The method is based on finding a hypersphere (in the criteria space) which is closest to the set of chosen nondominated solutions. The proposed modifications of the compromise hypersphere method are based on using various metrics and analyzing their influence on the original method. Applications of the proposed method are presented in four multi-criteria problems: the assignment problem, the knapsack problem, the project management problem and the manufacturing problem.
Mots-clés : multi-criteria problems, multiple objective linear programming, sensitivity analysis, decision making, compromise programming
@article{RO_2012__46_3_235_0, author = {Sitarz, Sebastian}, title = {Interactive compromise hypersphere method and its applications}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {235--252}, publisher = {EDP-Sciences}, volume = {46}, number = {3}, year = {2012}, doi = {10.1051/ro/2012017}, mrnumber = {2989085}, zbl = {1254.90219}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2012017/} }
TY - JOUR AU - Sitarz, Sebastian TI - Interactive compromise hypersphere method and its applications JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2012 SP - 235 EP - 252 VL - 46 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2012017/ DO - 10.1051/ro/2012017 LA - en ID - RO_2012__46_3_235_0 ER -
%0 Journal Article %A Sitarz, Sebastian %T Interactive compromise hypersphere method and its applications %J RAIRO - Operations Research - Recherche Opérationnelle %D 2012 %P 235-252 %V 46 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2012017/ %R 10.1051/ro/2012017 %G en %F RO_2012__46_3_235_0
Sitarz, Sebastian. Interactive compromise hypersphere method and its applications. RAIRO - Operations Research - Recherche Opérationnelle, Tome 46 (2012) no. 3, pp. 235-252. doi : 10.1051/ro/2012017. http://archive.numdam.org/articles/10.1051/ro/2012017/
[1] Chebychev reference software for evaluation of coordinate measuring machine data, Report EUR 15304 EN, National Physical Laboratory, Teddington, United Kingdom (1993).
, , , , , , , , and ,[2] Selecting the CP metric : A risk aversion approach. Eur. J. Oper. Res. 97 (1996) 593-596. | Zbl
,[3] Solving efficiently the 0-1 multi-objective knapsack problem. Comput. Oper. Res. 36 (2009) 260-279. | MR | Zbl
, and ,[4] Algorithms for geometric tolerance assessment. NPL Report DITC 228/94, National Physical Laboratory, Teddington, United Kingdom (1994).
, and ,[5] Closest solutions in ideal-point methods, in Advances in multiple objective and goal programming, edited by R. Caballero, F. Ruiz and R.E. Steuer. Springer Verlag, Berlin, LNEMS 455 (1996) 274-281. | MR
, , , ,[6] Parametric solution for linear bicriteria knapsack models. Manag. Sci. 42 (1996) 1565-1575. | Zbl
,[7] Multicriteria optimization. Springer Verlag, Berlin (2002). | MR | Zbl
,[8] A linear programming technique for the pptimization of the activities in maintenance projects. Int. J. Eng. Technol. IJET-IJENS 11 (2011).
,[9] A revised simplex method for linear multiple objective programs. Math. Programm. 5 (1973) 54-72. | MR | Zbl
and ,[10] Stability in vector maximization - a survey. Eur. J. Oper. Res. 25 (1986) 169-182. | MR | Zbl
and ,[11] Tabu search based procedure for solving the 0/1 multiobjective knapsack problem : The two objective case. J. Heuristics 6 (2000) 361-383. | Zbl
and ,[12] An illustrated guide to linear programming. Mc Graw-Hill Book Company, New York (1970). | Zbl
,[13] Linear programming, methods and applications. Mc Graw-Hill Book Company, New York (1975). | MR | Zbl
,[14] The compromise hypersphere for multiobjective linear programming. Eur. J. Oper. Res. 144 (2003) 459-479. | MR | Zbl
and ,[15] Fitting circles and spheres to coordinate measuring machine data. Int. J. Flexible Manuf. 10 (1998) 5-25. | MR | Zbl
, and ,[16] Core problem in bi-criteria {0,1} -knapsack problem. Comput. Oper. Res. 35 (2008) 2292-2306. | MR | Zbl
, and ,[17] Sensitivity analysis in multiple objective linear programming : the tolerance approach. Eur. J. Oper. Res. 38 (1989) 63-69. | MR | Zbl
, and ,[18] Additive and multiplicative tolerance in multiobjective linear programming. Oper. Res. Lett. 36 (2008) 393-396. | MR | Zbl
,[19] Project Management. Amacom, New York (1991).
and ,[20] Compromise solution by MCDM methods : a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156 (2004) 445-455. | Zbl
and ,[21] Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 178 (2007) 514-529. | Zbl
and ,[22] Hybrid methods in multi-criteria dynamic programming. Appl. Math. Comput. 180 (2006) 38-45. | MR | Zbl
,[23] Postoptimal analysis in multicriteria linear programming. Eur. J. Oper. Res. 191 (2008) 7-18. | MR | Zbl
,[24] Ant algorithms and simulated annealing for multicriteria dynamic programming. Comput. Oper. Res. 36 (2009) 433-441. | MR | Zbl
,[25] Standard sensitivity analysis and additive tolerance approach in MOLP. Ann. Oper. Res. 181 (2010) 219-232. | MR | Zbl
,[26] Dynamic programming with ordered structures : theory, examples and applications. Fuzzy Sets and Systems 161 (2010) 2623-2641. | MR | Zbl
,[27] Sensitivity analysis of weak efficiency in MOLP. Asia-Pacific J. Oper. Res. 28 (2011) 445-455. | MR | Zbl
,[28] Mean value and volume-based sensitivity analysis for Olympic rankings. Eur. J. Oper. Res. 216 (2012) 232-238. | MR | Zbl
,[29] An Interactive weighted Tchebycheff procedure for multiple objective programming. Math. Programm. 26 (1981) 326-344. | MR | Zbl
and[30] Multiple criteria optimization theory : computation and application. John Willey, New York (1986). | MR | Zbl
,[31] Performance of the MOSA method for the bicriteria assignment problem. J. Heuristics 6 (2000) 259-310. | Zbl
, , and ,[32] Discrete dynamic programming with outcomes in random variable structures. Eur. J. Oper. Res. 177 (2007) 1535-1548. | MR | Zbl
and ,[33] Multicriteria assignment problem - a new method. Technical Report, Faculte Polytechnique de Mons, Belgium (1992).
and ,[34] Reference point approaches, in Multicriteria Decision Making, edited by R. Gal, T.J. Stewart, T. Hanne. Kluwer, Boston, MA (Chap. 9) (1999). | MR | Zbl
,[35] A special Multi-objective assigmnet problem. J. Oper. Res. Soc. 35 (1984) 759-767. | Zbl
,[36] Faster construction projects with CPM Scheduling. McGraw Hill (2007).
and ,[37] The set of all nondominated solutions in linear cases and a multicriteria simplex method. J. Math. Anal. Appl. 49 (1975) 430-468. | MR | Zbl
and ,[38] Multiple Criteria Decision Making. McGraw-Hill Book Company, New York (1982). | Zbl
,[39] An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Manag. Sci. 29 (1983) 519-529. | MR | Zbl
and ,Cité par Sources :