M/M/1 retrial queue with collisions and working vacation interruption under N-policy
RAIRO - Operations Research - Recherche Opérationnelle, Tome 46 (2012) no. 4, pp. 355-371.

Consider an M/M/1 retrial queue with collisions and working vacation interruption under N-policy. We use a quasi birth and death process to describe the considered system and derive a condition for the stability of the model. Using the matrix-analytic method, we obtain the stationary probability distribution and some performance measures. Furthermore, we prove the conditional stochastic decomposition for the queue length in the orbit. Finally, some numerical examples are presented.

DOI : 10.1051/ro/2012022
Classification : 60k25, 90B22
Mots-clés : retrial, collision, working vacation interruption, N-policy
@article{RO_2012__46_4_355_0,
     author = {Tao, Li and Liu, Zaiming and Wang, Zhizhong},
     title = {M/M/1 retrial queue with collisions and working vacation interruption under {N-policy}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {355--371},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {4},
     year = {2012},
     doi = {10.1051/ro/2012022},
     zbl = {1270.60107},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2012022/}
}
TY  - JOUR
AU  - Tao, Li
AU  - Liu, Zaiming
AU  - Wang, Zhizhong
TI  - M/M/1 retrial queue with collisions and working vacation interruption under N-policy
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2012
SP  - 355
EP  - 371
VL  - 46
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2012022/
DO  - 10.1051/ro/2012022
LA  - en
ID  - RO_2012__46_4_355_0
ER  - 
%0 Journal Article
%A Tao, Li
%A Liu, Zaiming
%A Wang, Zhizhong
%T M/M/1 retrial queue with collisions and working vacation interruption under N-policy
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2012
%P 355-371
%V 46
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2012022/
%R 10.1051/ro/2012022
%G en
%F RO_2012__46_4_355_0
Tao, Li; Liu, Zaiming; Wang, Zhizhong. M/M/1 retrial queue with collisions and working vacation interruption under N-policy. RAIRO - Operations Research - Recherche Opérationnelle, Tome 46 (2012) no. 4, pp. 355-371. doi : 10.1051/ro/2012022. http://archive.numdam.org/articles/10.1051/ro/2012022/

[1] B. Choi, K. Park and C. Pearce, An M/M/1 retrial queue with control policy and general retrial times. Queueing Syst. 14 (1993) 275-292. | MR | Zbl

[2] B. Choi, Y. Shin and W. Ahn, Retrial queues with collision arising from unslotted CSMA/CD protocol. Queueing Syst. 11 (1992) 335-356. | MR | Zbl

[3] B. Kumar, G. Vijayalakshmi, A. Krishnamoorthy and S. Basha, A single server feedback retrial queue with collisions. Comput. Oper. Res. 37 (2010) 1247-1255. | MR | Zbl

[4] D. Wu and H. Takagi, M/G/1 queue with multiple working vacations. Perform. Eval. 63 (2006) 654-681.

[5] G. Latouche and V. Ramaswami, Introduction to matrix analytic methods in stochastic modelling. ASA-SIAM Series on Applied Probability, USA (1999). | MR | Zbl

[6] J. Artalejo and A. Corral, Retrial queueing systems. Springer, Berlin (2008). | MR | Zbl

[7] J. Kim, Retrial queueing system with collision and impatience. Commun. Korean Math. Soc. 25 (2010) 647-653. | MR | Zbl

[8] J. Li and N. Tian, Performance analysis of a GI/M/1 queue with single working vacation. Appl. Math. Comput. 217 (2011) 4960-4971. | MR | Zbl

[9] J. Li and N. Tian, The M/M/1 queue with working vacations and vacation interruption. J. Syst. Sci. Syst. Eng. 16 (2007) 121-127.

[10] J. Li, N. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption. Appl. Math. Modell. 32 (2008) 2715-2730. | MR | Zbl

[11] J. Wu, Z. Liu and Y. Peng, A discrete-time Geo/G/1 retrial queue with preemptive resume and collisions. Appl. Math. Modell. 35 (2011) 837-847. | MR | Zbl

[12] L. Servi and S. Finn, M/M/1 queue with working vacations (M/M/1/WV). Perform. Eval. 50 (2002) 41-52.

[13] M. Martin and A. Corral, On the M/G/1 retrial queueing system with liner control policy. Top 3 (1995) 285-305. | MR | Zbl

[14] M. Zhang and Z. Hou, Performance analysis of M/G/1 queue with working vacations and vacation interruption. J. Comput. Appl. Math. 234 (2010) 2977-2985. | MR | Zbl

[15] N. Tian and Z. Zhang, Vacation queueing models-theory and applications. Springer-Verlag, New York (2006). | MR | Zbl

[16] R. Lillo, A G/M/1 queue witn exponential retrial. Top 4 (1996) 99-120. | MR | Zbl

[17] T. Do, M/M/1 retrial queue with working vacations. Acta Inform. 47 (2010) 67-75. | MR | Zbl

[18] W. Liu, X. Xu and N. Tian, Stochastic decompositions in the M/M/1 queue with working vacations. Oper. Res. Lett. 35 (2007) 595-600. | MR | Zbl

[19] Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations. Oper. Res. Lett. 33 (2005) 201-209. | MR | Zbl

[20] Y. Baba, The M/PH/1 queue with working vacations and vacation interruption. J. Syst. Sci. Syst. Eng. 19 (2010) 496-503.

[21] Z. Zhang and X. Xu, Analysis for the M/M/1 queue with multiple working vacations and N-policy. Infor. Manag. Sci. 19 (2008) 495-506. | MR | Zbl

Cité par Sources :