From Eckart and Young approximation to Moreau envelopes and vice versa
RAIRO - Operations Research - Recherche Opérationnelle, Tome 47 (2013) no. 3, pp. 299-310.

In matricial analysis, the theorem of Eckart and Young provides a best approximation of an arbitrary matrix by a matrix of rank at most r. In variational analysis or optimization, the Moreau envelopes are appropriate ways of approximating or regularizing the rank function. We prove here that we can go forwards and backwards between the two procedures, thereby showing that they carry essentially the same information.

DOI : 10.1051/ro/2013040
Classification : 15A, 46N10, 65K10, 90C
Mots-clés : Eckart and Young theorem, moreau envelopes, rank minimization problems
@article{RO_2013__47_3_299_0,
     author = {Hiriart-Urruty, Jean-Baptiste and Le, Hai Yen},
     title = {From {Eckart} and {Young} approximation to {Moreau} envelopes and \protect\emph{vice versa}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {299--310},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {3},
     year = {2013},
     doi = {10.1051/ro/2013040},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2013040/}
}
TY  - JOUR
AU  - Hiriart-Urruty, Jean-Baptiste
AU  - Le, Hai Yen
TI  - From Eckart and Young approximation to Moreau envelopes and vice versa
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2013
SP  - 299
EP  - 310
VL  - 47
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2013040/
DO  - 10.1051/ro/2013040
LA  - en
ID  - RO_2013__47_3_299_0
ER  - 
%0 Journal Article
%A Hiriart-Urruty, Jean-Baptiste
%A Le, Hai Yen
%T From Eckart and Young approximation to Moreau envelopes and vice versa
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2013
%P 299-310
%V 47
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2013040/
%R 10.1051/ro/2013040
%G en
%F RO_2013__47_3_299_0
Hiriart-Urruty, Jean-Baptiste; Le, Hai Yen. From Eckart and Young approximation to Moreau envelopes and vice versa. RAIRO - Operations Research - Recherche Opérationnelle, Tome 47 (2013) no. 3, pp. 299-310. doi : 10.1051/ro/2013040. http://archive.numdam.org/articles/10.1051/ro/2013040/

[1] U. Helmke and J.B. Moore, Optimization and Dynamical Systems. Spinger Verlag (1994). | MR | Zbl

[2] N. Higham, Matrix nearness problems and applications, in M.J.C Gover and S. Barnett, eds., Applications of Matrix Theory. Oxford University Press (1989) 1-27. | MR | Zbl

[3] J.-B. Hiriart-Urruty and H.Y. Le, A variational approach of the rank function. TOP (2013) DOI: 10.1007/s11750-013-0283-y. | MR | Zbl

[4] J.-B. Hiriart-Urruty and J. Malick, A fresh variational analysis look at the world of the positive semidefinite matrices. J. Optim. Theory Appl. 153 (2012) 551-577. | MR | Zbl

[5] J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien. (French) C. R. Acad. Sci. Paris 255 (1962) 2897-2899 (Reviewer: I.G. Amemiya) 46.90. | MR | Zbl

[6] J.-J. Moreau, Propriétés des applications “prox”. C. R. Acad. Sci. Paris 256 (1963) 1069-1071. | MR | Zbl

[7] R.T. Rockafellar and R.J.-B. Wets, Variational analysis. Springer (1998). | MR | Zbl

[8] G.W. Stewart, Matrix algorithms, Basic decompositions, Vol. I. Society for Industrial and Applied Mathematics, Philadelphia, PA (1998). | MR | Zbl

Cité par Sources :