A note on robust Nash equilibria with uncertainties
RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 365-371.

In this short note, we investigate the framework where agents or players have some uncertainties upon their payoffs or losses, the behavior (or the type, number or any other characteristics) of other players. More specifically, we introduce an extension of the concept of Nash equilibria that generalize different solution concepts called by their authors, and depending on the context, either as robust, ambiguous, partially specified or with uncertainty aversion. We provide a simple necessary and sufficient condition that guarantees its existence and we show that it is actually a selection of conjectural (or self-confirming) equilibria. We finally conclude by how this concept can and should be defined in games with partial monitoring in order to preserve existence properties.

DOI : 10.1051/ro/2014001
Classification : 91A10, 91B52
Mots-clés : robust games, robust Nash equilibria, uncertainties, partial monitoring, conjectural equilibria
@article{RO_2014__48_3_365_0,
     author = {Perchet, Vianney},
     title = {A note on robust {Nash} equilibria with uncertainties},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {365--371},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {3},
     year = {2014},
     doi = {10.1051/ro/2014001},
     mrnumber = {3264383},
     zbl = {1296.91013},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2014001/}
}
TY  - JOUR
AU  - Perchet, Vianney
TI  - A note on robust Nash equilibria with uncertainties
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2014
SP  - 365
EP  - 371
VL  - 48
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2014001/
DO  - 10.1051/ro/2014001
LA  - en
ID  - RO_2014__48_3_365_0
ER  - 
%0 Journal Article
%A Perchet, Vianney
%T A note on robust Nash equilibria with uncertainties
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2014
%P 365-371
%V 48
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2014001/
%R 10.1051/ro/2014001
%G en
%F RO_2014__48_3_365_0
Perchet, Vianney. A note on robust Nash equilibria with uncertainties. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 365-371. doi : 10.1051/ro/2014001. http://archive.numdam.org/articles/10.1051/ro/2014001/

[1] M. Aghassi and D. Bertsimas, Robust game theory. Math. Program., Ser. B 107 (2006) 231-273. | MR | Zbl

[2] Y. Azrieli, On pure conjectural equilibrium with non-manipulable information. Int. J. Game Theory 38 (2009) 209-219. | MR | Zbl

[3] S. Bade, Ambiguous act equilibria. Games. Econ. Behav. 71 (2010) 246-260. | MR | Zbl

[4] P. Battigalli and D. Guaitoli, Conjectural equilibrium. Mimeo (1988).

[5] A. Ben-Tal and A. Nemirovski, Robust convex optimization. Math. Oper. Res. 23 (1998) 769-805. | MR | Zbl

[6] A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust optimization. Princeton University Press (2009). | MR | Zbl

[7] A. Ben-Tal, B. Golany and S. Shtern, Robust multi echelon multi period inventory control. Eur. J. Oper. Res. 199 (2009) 922-935. | Zbl

[8] D. Bertsimas. and A. Thiele, Robust and data-driven optimization: modern decision-making under uncertainty, in Tutorials on Oper. Res. (2006) Chap. 4, 122-195. | MR

[9] A. Candia-Véjar, E. Álvarez-Miranda and N. Maculan, Minmax regret combinatorial optimization problems: an algorithmic perspective. RAIRO - Oper. Res. 45 (2011) 101-129. | EuDML | Numdam | MR | Zbl

[10] D. Ellsberg, Risk, ambiguity and the Savage axiom. Quat. J. Econom. 75 (1961) 643-669. | Zbl

[11] D. Fudenberg and D.K. Levine, Self-confirming equilibrium. Econometrica 61 (1993) 523-545. | MR | Zbl

[12] I. Gilboa and D. Schmeidler, Maxmin expected utility with a non-unique prior. J. Math. Econ. 61 (1989) 141-153. | MR | Zbl

[13] I. Glicksberg, A further generalization of the Kakutani fixed point theorem, with applications to Nash equilibrium points. Proc. Am. Math. Soc. 3 (1952) 170-174. | MR | Zbl

[14] C. Hitch, Uncertainties in operations research. Oper. Res. 8 (1960) 437-445. | MR | Zbl

[15] E. Kalai and E. Lehrer, Subjective equilibrium in repeated games. Econometrica 61 (1993) 1231-1240. | MR | Zbl

[16] P. Klibanoff, Uncertainty, decision and normal form games. Mimeo (1996).

[17] E. Lehrer, Partially specified probabilities: decisions and games. Am. Econ. J. Micro. 4 (2012) 70-100.

[18] G. Lugosi, S. Mannor and G. Stoltz, Strategies for prediction under imperfect monitoring. Math. Oper. Res. 33 (2008) 513-528. | MR | Zbl

[19] J.-F. Mertens, S. Sorin and S. Zamir, Repeated games, CORE discussion paper (1994) 9420-9422.

[20] J.F. Nash, Equilibrium points in N-person games. Proc. Natl. Acad. Sci. USA 36 (1950) 48-49. | MR | Zbl

[21] J.F. Nash, Non-cooperative games. Ann. Math. 54 (1951) 286-295. | MR | Zbl

[22] V. Perchet, Internal regret with partial monitoring, calibration-based optimal algorithms. J. Mach. Learn. Res. 12 (2011) 1893-1921. | MR | Zbl

[23] F. Riedel and L. Sass, The strategic use of ambiguity. Mimeo (2011).

[24] A. Rustichini, Minimizing regret: the general case. Games Econom. Behav. 29 (1999) 224-243. | MR | Zbl

Cité par Sources :