The object of this research in the queueing theory is a theorem about the Strong-Law-of-Large-Numbers (SLLN) under the conditions of heavy traffic in a multiserver open queueing network. SLLN is known as a fluid limit or fluid approximation. In this work, we prove that the long-term average rate of growth of the queue length process of a multiserver open queueing network under heavy traffic strongly converges to a particular vector of rates. SLLN is proved for the values of an important probabilistic characteristic of the multiserver open queueing network investigated as well as the queue length of jobs.
Mots-clés : mathematical models of information systems, performance evaluation, queueing theory, multiserver open queueing network, heavy traffic, limit theorem, queue length of jobs
@article{RO_2014__48_3_349_0, author = {Minkevi\v{c}ius, Saulius}, title = {Fluid limits for the queue length of jobs in multiserver open queueing networks}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {349--363}, publisher = {EDP-Sciences}, volume = {48}, number = {3}, year = {2014}, doi = {10.1051/ro/2014011}, mrnumber = {3264382}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2014011/} }
TY - JOUR AU - Minkevičius, Saulius TI - Fluid limits for the queue length of jobs in multiserver open queueing networks JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2014 SP - 349 EP - 363 VL - 48 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2014011/ DO - 10.1051/ro/2014011 LA - en ID - RO_2014__48_3_349_0 ER -
%0 Journal Article %A Minkevičius, Saulius %T Fluid limits for the queue length of jobs in multiserver open queueing networks %J RAIRO - Operations Research - Recherche Opérationnelle %D 2014 %P 349-363 %V 48 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2014011/ %R 10.1051/ro/2014011 %G en %F RO_2014__48_3_349_0
Minkevičius, Saulius. Fluid limits for the queue length of jobs in multiserver open queueing networks. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 349-363. doi : 10.1051/ro/2014011. http://archive.numdam.org/articles/10.1051/ro/2014011/
[1] Convergence of Probability Measures. Wiley, New York (1968). | MR | Zbl
,[2] Weak convergence of functionals of random sequences and processes defined on the whole axis. Proc. Stecklov Math. Inst. 128 (1972) 41-65. | MR | Zbl
,[3] Stochastic Processes in Queueing Theory. Springer, Berlin (1976). | MR | Zbl
,[4] Asymptotic Methods in Queueing Theory. Wiley, New York (1984). | MR | Zbl
,[5] Limit theorems for queueing networks. Theory Prob. Appl. 31 (1986) 413-427. | MR | Zbl
,[6] Stochastic discrete flow networks: Diffusion approximations and bottlenecks. The Annals of Probability 19 (1991) 1463-1519. | MR | Zbl
and ,[7] Diffusion approximations for computer communications networks. in Computer Communications, Proc. Syrup. Appl. Math., edited by B. Gopinath. American Mathematical Society (1985) 83-124. | MR | Zbl
,[8] Diffusion approximations. in Handbooks in Operations Research and Management Science, edited by D.P. Heyman and M.J. Sobel, Vol. 2 of Stochastic Models. North-Holland (1990). | MR | Zbl
,[9] A new view of the heavy-traffic limit theorems for infinite-server queues. Adv. Appl. Probab. 23 (1991) 188-209. | MR | Zbl
and ,[10] Diffusion approximation in queueing theory. Fundamentals of Teletraffic Theory. Proc. Third Int. Seminar on Teletraffic Theory (1984) 147-158.
and ,[11] The heavy traffic approximation for single server queues in series. Adv. Appl. Probab. 10 (1973) 613-629. | MR | Zbl
,[12] The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab. 10 (1978) 886-905. | MR | Zbl
,[13] A note on networks of infinite-server queues. J. Appl. Probab. 18 (1981) 561-567. | MR | Zbl
and ,[14] On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math. 41 (1981) 345-361. | MR | Zbl
and ,[15] Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22 (1987) 77-115. | MR | Zbl
and ,[16] Multiple channel queues in heavy traffic. IV. Law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 17 (1971) 168-180. | MR | Zbl
,[17] Multiple channel queues in heavy traffic I. Adv. Appl. Probab. 2 (1970) 150-175. | MR | Zbl
and ,[18] Multiple channel queues in heavy traffic II: Sequences, networks and batches. Adv. Appl. Probab. 2 (1970) 355-364. | MR | Zbl
and ,[19] Diffusion Approximations for Optimal Filtering of Jump Processes and for Queueing Networks. Ph.D. dissertation, University of Wisconsin (1983). | MR
,[20] Joint distributions in Poissonian tandem queues. Queueing Systems 12 (1992) 274-286. | MR | Zbl
and ,[21] An asymptotic analysis of blocking. Modelling and Performance Evaluation Methodology. Springer, Berlin (1984) 3-20. | MR | Zbl
,[22] Several solved and unsolved problems of the service by queues in series (in Russian). Izv. AN USSR, Ser. Tech. Kibern. 6 (1970) 88-92.
,[23] The diffusion approximation for queues with input flow, depending on a queue state and general service. Theory Prob. Appl. 33 (1988) 124-135. | Zbl
, and ,[24] Tandem queues with finite intermediate waiting room and blocking in heavy traffic. Prob. Control Int. Theory 17 (1988) 3-13. | MR | Zbl
and ,[25] Network of queues - A survey of weak convergence results. Management Science 24 (1978) 1175-1193. | MR | Zbl
,[26] Theory of Martingales. Kluwer, Boston (1989).
and ,[27] On the global values of the queue length in open queueing networks, Int. J. Comput. Math. (2009) 1029-0265. | Zbl
,[28] On the law of the iterated logarithm in multiserver open queueing networks, Stochastics, 2013 (accepted).
,[29] Application of the law of the iterated logarithm in open queueing networks. WSEAS Transactions on Systems 6 (2007) 643-651. | Zbl
and ,[30] Convergence of random processes and limit theorems in probability theory. Theory Prob. Appl. 1 (1956) 157-214. | MR | Zbl
,[31] Open queueing networks in heavy traffic. Math. Oper. Res. 9 (1984) 441-458. | MR | Zbl
,[32] A multiclass feedback queue in heavy traffic. Adv. Appl. Probab. 20 (1988) 179-207. | MR | Zbl
,[33] A network of priority queues in heavy traffic: one bottleneck station. Queueing Systems 6 (1990) 33-58. | MR | Zbl
and ,[34] On the law of the iterated logarithm in open queueing networks. Eur. J. Oper. Res. 120 (2000) 632-640. | MR | Zbl
and ,[35] Studies in the Theory of Random Processes. Addison-Wesley, New York (1965). | MR | Zbl
,[36] An invariance principle for the law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 3 (1964) 211-226. | MR | Zbl
,[37] Asymptotic stationarity of queues in series and the heavy traffic approximation. The Annals of Probability 18 (1990) 1232-1248. | MR | Zbl
and ,[38] Weak convergence theorems for priority queues: preemptive resume discipline. J. Appl. Probab. 8 (1971) 79-94. | MR | Zbl
,[39] Heavy traffic limit theorems for queues: a survey. in Lecture Notes in Economics and Mathematical Systems, Vol. 98. Springer-Verlag, Berlin, Heidelberg, New York (1971) 307-350. | MR | Zbl
,[40] On the heavy-traffic limit theorem for GI/G/∞ queues. Adv. Appl. Probab. 14 (1982) 171-190. | MR | Zbl
,Cité par Sources :