Complementarities and the existence of strong Berge equilibrium
RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 373-379.

This paper studies the existence and the order structure of strong Berge equilibrium, a refinement of Nash equilibrium, for games with strategic complementarities à la strong Berge. It is shown that the equilibrium set is a nonempty complete lattice. Moreover, we provide a monotone comparative statics result such that the greatest and the lowest equilibria are increasing.

DOI : https://doi.org/10.1051/ro/2014012
Classification : 91B52,  47H10
Mots clés : strong Berge equilibrium, refinement, games with strategic complementarities, fixed point theory, supermodularity
@article{RO_2014__48_3_373_0,
     author = {Keskin, Kerim and \c{C}a\u{g}r{\i} Sa\u{g}lam, H.},
     title = {Complementarities and the existence of strong {Berge} equilibrium},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {373--379},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {3},
     year = {2014},
     doi = {10.1051/ro/2014012},
     zbl = {1296.91012},
     mrnumber = {3264384},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2014012/}
}
TY  - JOUR
AU  - Keskin, Kerim
AU  - Çağrı Sağlam, H.
TI  - Complementarities and the existence of strong Berge equilibrium
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2014
DA  - 2014///
SP  - 373
EP  - 379
VL  - 48
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2014012/
UR  - https://zbmath.org/?q=an%3A1296.91012
UR  - https://www.ams.org/mathscinet-getitem?mr=3264384
UR  - https://doi.org/10.1051/ro/2014012
DO  - 10.1051/ro/2014012
LA  - en
ID  - RO_2014__48_3_373_0
ER  - 
Keskin, Kerim; Çağrı Sağlam, H. Complementarities and the existence of strong Berge equilibrium. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 373-379. doi : 10.1051/ro/2014012. http://archive.numdam.org/articles/10.1051/ro/2014012/

[1] C. Berge, Théorie Générale des Jeux à n Personnes, Gautier Villars, Paris (1957). | Numdam | MR 99259 | Zbl 0082.34702

[2] J.F. Nash, Non-cooperative games. Annal. Math. 54 (1951) 286-295. | MR 43432 | Zbl 0045.08202

[3] R. Aumann, Acceptable points in a general cooperative n-person games. in Contributions to the Theory of Games IV. Annal. Math. Study 40 (1959) 287-324. | MR 104521 | Zbl 0085.13005

[4] R. Nessah, M. Larbani and T. Tazdaït, Strong Berge equilibrium and strong Nash equilibrium: Their relation and existence, in Game Theory Appl., edited by L.A. Petrosjan and V.V. Mazalov. Vol. 15. Nova Science Publishers (2012) 165-180.

[5] M. Larbani and R. Nessah, Sur l'équilibre fort selon Berge. RAIRO Oper. Res. 35 (2001) 439-451. | Numdam | MR 1896582 | Zbl 1012.91002

[6] K.Y. Abalo and M.M. Kostreva, Intersection theorems and their applications to Berge equilibria. Appl. Math. Comput. 182 (2006) 1840-1848. | MR 2282626 | Zbl 1151.91324

[7] M. Deghdak and M. Florenzano, On the existence of Berge's strong equilibrium. Int. Game Theory Rev. 13 (2011) 325-340. | MR 2943857 | Zbl 1259.91008

[8] L. Zhou, The set of Nash equilibria of a supermodular game is a complete lattice. Games Econ. Behavior 7 (1994) 295-300. | MR 1295306 | Zbl 0809.90138

[9] F. Echenique, A short and constructive proof of Tarski's fixed-point theorem. Int. J. Game Theory 33 (2005) 215-218. | MR 2211721 | Zbl 1071.91002

[10] D.M. Topkis, Supermodularity and Complementarity, Princeton University Press, Princeton (1998). | MR 1614637

[11] X. Vives, Complementarities and games: New developments. J. Econ. Literature 43 (2005) 437-479.

[12] R.W. Cooper, Coordination Games: Complementarities and Macroeconomics, Cambridge University Press, Cambridge (1999). | Zbl 0941.91018

Cité par Sources :