In this paper, we propose a nonlinear multi-objective optimization problem whose parameters in the objective functions and constraints vary in between some lower and upper bounds. Existence of the efficient solution of this model is studied and gradient based as well as gradient free optimality conditions are derived. The theoretical developments are illustrated through numerical examples.
Mots-clés : multi-objective optimization problem, efficient solution, optimality condition, interval valued convex function
@article{RO_2014__48_4_545_0, author = {Bhurjee, Ajay Kumar and Panda, Geetanjali}, title = {Multi-objective {Optimization} {Problem} with {Bounded} {Parameters}}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {545--558}, publisher = {EDP-Sciences}, volume = {48}, number = {4}, year = {2014}, doi = {10.1051/ro/2014023}, mrnumber = {3264393}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2014023/} }
TY - JOUR AU - Bhurjee, Ajay Kumar AU - Panda, Geetanjali TI - Multi-objective Optimization Problem with Bounded Parameters JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2014 SP - 545 EP - 558 VL - 48 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2014023/ DO - 10.1051/ro/2014023 LA - en ID - RO_2014__48_4_545_0 ER -
%0 Journal Article %A Bhurjee, Ajay Kumar %A Panda, Geetanjali %T Multi-objective Optimization Problem with Bounded Parameters %J RAIRO - Operations Research - Recherche Opérationnelle %D 2014 %P 545-558 %V 48 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2014023/ %R 10.1051/ro/2014023 %G en %F RO_2014__48_4_545_0
Bhurjee, Ajay Kumar; Panda, Geetanjali. Multi-objective Optimization Problem with Bounded Parameters. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 4, pp. 545-558. doi : 10.1051/ro/2014023. http://archive.numdam.org/articles/10.1051/ro/2014023/
[1] Efficient solution of interval optimization problem. Math. Meth. Oper. Res. 76 (2012) 273-288. | MR | Zbl
and ,[2] Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems. Inform. Sci. 233 (2013) 141-161. | MR | Zbl
, and ,[3] Computing the tolerances in multiobjective linear programming. Optim. Methods Softw. 23 (2008) 731-739. | MR | Zbl
,[4] Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets Syst. 78 (1996) 231-241. | MR | Zbl
and ,[5] Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48 (1990) 219-225. | Zbl
and ,[6] Nonlinear Programming. New York: McGraw Hill (1969). | MR | Zbl
,[7] Interval Analysis. Prentice-Hall (1966). | MR | Zbl
,[8] Multiple objective linear programming models with interval coefficients an illustrated overview. Eur. J. Oper. Res. 181 (2007) 1434-1463. | Zbl
and ,[9] Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients. Central Eur. J. Oper. Res. 21 (2013) 625-649. | MR
and ,[10] Interval robust multi-objective algorithm. Nonlinear Anal. Theor. Meth. Appl. 71 (2009) 1818-1825. | Zbl
, , , and ,[11] An interactive method to multiobjective linear programming problem with interval coefficients. INFOR 30 (1992) 127-137. | Zbl
and ,[12] On interval-valued nonlinear programming problems. J. Math. Anal. Appl. 338 (2008) 299-316. | MR | Zbl
,[13] The karush-kuhn-tucker optimality conditions in multiobjective programming problems with interval-valued objective functions. Eur. J. Oper. Res. 196 (2009) 49-60. | MR | Zbl
,Cité par Sources :