Using Column Generation to Solve a Coal Blending Problem
RAIRO - Operations Research - Recherche Opérationnelle, Volume 49 (2015) no. 1, pp. 15-37.

In this paper, we formulate and solve a real life coal blending problem using a Column Generation Approach. The objective of the model is to prescribe optimal mixes of coal to produce coke. The problem is formulated as a mixed integer program. It involves various types of constraints arising from technical considerations of the blending process. The model also incorporates nonlinear constraints. It results in a large-scale problem that cannot be solved by classical operations research methods. Defining three heuristic methods based on column generation techniques, this paper proposes reasonable solutions for the industry.

Received:
Accepted:
DOI: 10.1051/ro/2014033
Classification: 90B30, 49M27
Keywords: Column generation, coal blending
Auray, Stéphane 1; de Wolf, Daniel 2; Smeers, Yves 3

1 CREST-Ensai, Rue Blaise Pascal, 35172 Bruz, FranceEquippe, Université du Côte d’Opale and CIRPEE
2 TVES, Université du Littoral Côte d’Opale 189B avenue Maurice Schumann, BP 5526, 59379 Dunkerque Cedex 1, France.
3 Center for Operations Research and Econometrics, UCL, 34 voie du Roman Pays, 1348 Louvain-La-Neuve, Belgium
@article{RO_2015__49_1_15_0,
     author = {Auray, St\'ephane and de Wolf, Daniel and Smeers, Yves},
     title = {Using {Column} {Generation} to {Solve} a {Coal} {Blending} {Problem}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {15--37},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/ro/2014033},
     mrnumber = {3349114},
     zbl = {1310.90038},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2014033/}
}
TY  - JOUR
AU  - Auray, Stéphane
AU  - de Wolf, Daniel
AU  - Smeers, Yves
TI  - Using Column Generation to Solve a Coal Blending Problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2015
SP  - 15
EP  - 37
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2014033/
DO  - 10.1051/ro/2014033
LA  - en
ID  - RO_2015__49_1_15_0
ER  - 
%0 Journal Article
%A Auray, Stéphane
%A de Wolf, Daniel
%A Smeers, Yves
%T Using Column Generation to Solve a Coal Blending Problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2015
%P 15-37
%V 49
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2014033/
%R 10.1051/ro/2014033
%G en
%F RO_2015__49_1_15_0
Auray, Stéphane; de Wolf, Daniel; Smeers, Yves. Using Column Generation to Solve a Coal Blending Problem. RAIRO - Operations Research - Recherche Opérationnelle, Volume 49 (2015) no. 1, pp. 15-37. doi : 10.1051/ro/2014033. http://archive.numdam.org/articles/10.1051/ro/2014033/

A. Brooke, D. Kendrick and A. Meeraus, GAMS User’s guide Release 2.25, The Scientific Press, San Francisco (1992).

G. Desaulniers, J. Desrosiers and M.M. Solomon, Column Generation. Springer (2005). | MR | Zbl

D. De Wolf, Using column generation to solve an industrial mixing problem, CORE Discussion Paper N 2003/42, Universit Catholique de Louvain (2003).

H. Greenberg, Analyzing the pooling problem. ORSA J. Comput. 7 (1995) 205–217. | DOI | Zbl

L.S. Lasdon and J.C. Plummer, SLP user guide. XMP Corporation (1986).

R. Sarker and E. Gunn, A simple SLP algorithm for solving a class of nonlinear programs. Eur. J. Oper. Res. 101 (1997) 140–154. | DOI | Zbl

F. Vanderbeck and L. Wolsey, An exact algorithm for IP column generation. Oper. Res. Lett. 19 (1996) 151–159. | DOI | MR | Zbl

F. Vanderbeck, On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Oper. Res. 48 (2000) 111–128. | DOI | MR | Zbl

F.J. Vasko, D.D. Newhart and A.D. Strauss, Coal blending models for optimum cokemaking and blast furnace operation. J. Oper. Res. Soc. 56 (2005) 235–243. | DOI | Zbl

H.P. Williams, Model building in Mathematical Programming. John Wiley (2013). | MR | Zbl

H.P. Williams, Model solving in Mathematical Programming. John Wiley (1992). | MR | Zbl

Cited by Sources: