Notation and classification for logistic network design models
RAIRO - Operations Research - Recherche Opérationnelle, Volume 49 (2015) no. 1, pp. 195-214.

This paper presents a notation and a classification system for the design models of logistic network. Our notation consists of three fields (analogous to Graham’s α|β|γ notation for scheduling problems). The proposed notation is applied for several articles from the literature. We focus on multi-period models with deterministic and stochastic demands. The proposed notation is based on three criteria corresponding to the main characteristics of the logistic networks: the structure (field α), the management rules (field β) and the performance criteria (field γ). A description of solution methods, datasets and results is also provided. Most articles deal with deterministic, multi-level models and only few of them include the international aspect of logistics, lead-times or subcontracting. Datasets used to test the methods are randomly generated by the authors and have different sizes. The heuristic methods are most commonly used.

DOI: 10.1051/ro/2014043
Classification: 90B10
Keywords: Design, logistic network, classification, notation, facility location, dataset, performance criterion
Gayraud, Fabrice 1; Grangeon, Nathalie 1; Deroussi, Laurent 1; Norre, Sylvie 1

1 LIMOS CNRS UMR 6158 – Antenne IUT d’Allier, Avenue Aristide Briand, 03100 Montluçon, France.
     author = {Gayraud, Fabrice and Grangeon, Nathalie and Deroussi, Laurent and Norre, Sylvie},
     title = {Notation and classification for logistic network design models},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {195--214},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/ro/2014043},
     zbl = {1310.90020},
     language = {en},
     url = {}
AU  - Gayraud, Fabrice
AU  - Grangeon, Nathalie
AU  - Deroussi, Laurent
AU  - Norre, Sylvie
TI  - Notation and classification for logistic network design models
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2015
SP  - 195
EP  - 214
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  -
DO  - 10.1051/ro/2014043
LA  - en
ID  - RO_2015__49_1_195_0
ER  - 
%0 Journal Article
%A Gayraud, Fabrice
%A Grangeon, Nathalie
%A Deroussi, Laurent
%A Norre, Sylvie
%T Notation and classification for logistic network design models
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2015
%P 195-214
%V 49
%N 1
%I EDP-Sciences
%R 10.1051/ro/2014043
%G en
%F RO_2015__49_1_195_0
Gayraud, Fabrice; Grangeon, Nathalie; Deroussi, Laurent; Norre, Sylvie. Notation and classification for logistic network design models. RAIRO - Operations Research - Recherche Opérationnelle, Volume 49 (2015) no. 1, pp. 195-214. doi : 10.1051/ro/2014043.

D. Ambrosino and M.G. Scutellà, Distribution network design: New problems and related models. Eur. J. Oper. Res. 165 (2005) 610–624. | DOI | Zbl

C. Canel, B.M. Khumawala, J. Law and A. Loh, An algorithm for the capacitated, multi-commodity multi-period facility location problem. Comput. Oper. Res. 28 (2001) 411–427. | DOI | Zbl

J. Dias, M.E. Captivo and J. Clìmaco, Capacitated dynamic location problems with opening, closure and reopening of facilities. IMA J. Manage. Math. 17 (2006) 317–348. | DOI | Zbl

W. Domschke and A. Drexl, ADD-heuristics’ starting procedures for capacitated plant location models. Eur. J. Oper. Res. 21 (1985) 47–53. | DOI | Zbl

S. Elhedhli and R. Merrick, Green supply chain network design to reduce carbon emissions. Transp. Res. D 17 (2012) 370–379. | DOI

D. Erlenkotter, A dual-based procedure for uncapacitated facility location. Oper. Res. 26 (1978) 992–1009. | DOI | Zbl

A. Ghaderi and M.S. Jabalameli, Modeling the budget-constrained dynamic uncapacitated facility location network design problem and solving it via two efficient heuristics: A case study of health care. Math. Comput. Model. 57 (2013) 382–400. | DOI | Zbl

Graham, L. Ronald, Lawler, L. Eugene, Lenstra, J. Karel and Kan, AHG. Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5 (1979) 287–326. | DOI | Zbl

S.E. Griffis, J.E. Bell and D. Closs, Metaheuristics in Logistics and Supply Chain Management. J. Business Logistics 33 (2012) 90–106. | DOI

G. Hamer-Lavoie and J.F. Cordeau, Un modèle pour la conception d’un réseau de distribution avec localisation, affectation et stocks. Inf. Syst. Oper. Res. 44 (2006) 1–18.

Y. Hinojosa, J. Puerto and F.R. Fernandez, A multiperiod two-echelon multicommodity capacitated plant location problem. Eur. J. Oper. Res. 123 (2000) 271–291. | DOI | Zbl

Y. Hinojosa, J. Kalcsics, S. Nickel, J. Puerto and S. Velten, Dynamic multi-echelon facility-location. Comput. Oper. Res. 35 (2008) 373–391. | Zbl

A. Kuehn and M. Hamburger, A heuristic program for locating warehouses. Manage. Sci. 9 (1963) 643–666. | DOI

A. Martel, The design of production-distribution networks: A mathematical programming approach. Supply Chain Optimization 98 (2005) 265–305. | DOI | Zbl

E. Melachrinoudis and H. Min, The dynamic relocation and phase-out of a hybrid, two echelon plant/warehousing facility. A multi objective approach. Eur. J. Oper. Res. 123 (2000) 1–15. | DOI | Zbl

M.T. Melo, S. Nickel and F. Saldanha-Da-Gama, Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput. Oper. Res. 33 (2006) 181–208. | DOI | Zbl

M.T. Melo, S. Nickel and F. Saldanha-Da-Gama, Facility location and supply chain management: A review. Eur. J. Oper. Res. 196 (2009) 401–412. | DOI | Zbl

F. Pan and R. Nagi, Multi-echelon supply chain network design in agile manufacturing. Omega 41 (2013) 969–983. | DOI

F. Pirard, D. Duvivier and O. Roux, Une heuristique hybride pour la reconfiguration des réseaux logistiques dans le cadre d’entreprises multi-sites. Actes du 6 e congrés international de génie industriel, Besançon France, 2005.

M. Ramezani, M. Bashiri and R. Tavakkoli-Moghaddam, A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Appl. Math. Model. 37 (2013) 328–344. | DOI | Zbl

G. Sá, Branch-and-bound and approximate solutions to the capacitated plant-location problem. Oper. Res. 17 (1969) 1005–1016. | DOI

F. Saldanha-Da-Gama and M.E. Captivo, A heuristic approach for the discrete dynamic location problem. Location Sci. 6 (1998) 211–223. | DOI

B.L. Shankar, S. Basavarajappa, J.C.H. Chen and R.S. Kadadevaramath, Location and allocation decisions for multi-echelon supply chain network - A multi-objective evolutionary approach. Expert Syst. Appl. 40 (2013) 551–562. | DOI

M. Suon, Optimisation de la logistique internationale à horizon stratégique. Application à un constructeur automobile. Thèse de doctorat de l’université de Clermont-Ferrand, France (2011).

D. Sweeney and R. Tatham, An improved long-run model for multiple warehouse location. Manage. Sci. 22 (1978) 748–758. | DOI | Zbl

S.S. Syam, A model and methodologies for the location problem with logistical components. Comput. Oper. Res. 29 (2002) 1173–1193. | DOI | Zbl

P.N. Thanh, N. Bostel and O. Péton, A dynamic model for facility location in the design of complex supply chains. Int. J. Prod. Econ. 113 (2008) 678–693. | DOI

P.N. Thanh, N. Bostel and O. Péton, A DC programming heuristic applied to the logistics network design problem. Int. J. Prod. Econ. 136 (2012) 94–105. | DOI

Y.C. Tsao and J.C. Lu, A supply chain network design considering transportation cost discounts. Transp. Res. E 48 (2012) 401–414. | DOI

Y.C. Tsao, D. Mangotra, J.C. Lu and M. Dong, A continuous approximation approach for the integrated facility-inventory allocation problem. Eur. J. Oper. Res. 222 (2012) 216–228. | DOI | Zbl

T. Van Roy and D. Erlenkotter, A dual-based procedure for dynamic facility location. Manage. Sci. 28 (1982) 1091–1105. | DOI | Zbl

D. Vila, A. Martel and R. Beauregard, Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry. Int. J. Prod. Econ. 102 (2006) 358–378. | DOI

F. Wang, Lai X and N. Shi, A multi-objective optimization for green supply chain network design. Decis. Support Syst. 51 (2011) 262–269. | DOI

T. Xifeng, Z. Ji and X. Peng, A multi-objective optimization model for sustainable logistics facility location. Transp. Res. D 22 (2013) 45–48. | DOI

Cited by Sources: