Complexity analysis of a weighted-full-Newton step interior-point algorithm for P * (κ)-LCP
RAIRO - Operations Research - Recherche Opérationnelle, Tome 50 (2016) no. 1, pp. 131-143.

In this paper, a weighted-path-following interior point algorithm for P * (κ)-linear complementarity problems (P * (κ)-LCP) is presented. The algorithm uses at each weighted interior point iteration only feasible full-Newton steps and the strategy of the central-path for getting a solution for P * (κ)-LCP. We prove that the proposed algorithm has quadratically convergent with polynomial time. The complexity bound, namely, O((1+κ)nlogn ϵ) of the algorithm is obtained. Few numerical tests are reported to show the efficiency of the algorithm.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2015020
Classification : 90C33, 90C51, 11Y16
Mots-clés : Linear complementarity problems, P(κ)-matrix, weighted-path-following, interior-point methods, polynomial complexity
Achache, Mohamed 1

1 Laboratoire de Mathématiques Fondamentales et Numériques. Université Ferhat Abbas, Sétif 1, 19000 Sétif, Algérie.
@article{RO_2016__50_1_131_0,
     author = {Achache, Mohamed},
     title = {Complexity analysis of a {weighted-full-Newton} step interior-point algorithm for $P_{\ast{}}(\kappa{})${-LCP}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {131--143},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {1},
     year = {2016},
     doi = {10.1051/ro/2015020},
     zbl = {1333.90132},
     mrnumber = {3460667},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2015020/}
}
TY  - JOUR
AU  - Achache, Mohamed
TI  - Complexity analysis of a weighted-full-Newton step interior-point algorithm for $P_{\ast{}}(\kappa{})$-LCP
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2016
SP  - 131
EP  - 143
VL  - 50
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2015020/
DO  - 10.1051/ro/2015020
LA  - en
ID  - RO_2016__50_1_131_0
ER  - 
%0 Journal Article
%A Achache, Mohamed
%T Complexity analysis of a weighted-full-Newton step interior-point algorithm for $P_{\ast{}}(\kappa{})$-LCP
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2016
%P 131-143
%V 50
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2015020/
%R 10.1051/ro/2015020
%G en
%F RO_2016__50_1_131_0
Achache, Mohamed. Complexity analysis of a weighted-full-Newton step interior-point algorithm for $P_{\ast{}}(\kappa{})$-LCP. RAIRO - Operations Research - Recherche Opérationnelle, Tome 50 (2016) no. 1, pp. 131-143. doi : 10.1051/ro/2015020. http://archive.numdam.org/articles/10.1051/ro/2015020/

M. Achache, A weighted path-following method for the linear complementarity problem. Studia Univ. Babes-Bolyai, Informatica XLIX (2004) 61–73. | MR | Zbl

M. Achache and R. Khebchache, A full-Newton step feasible weighted primal-dual interior point algorithm for monotone LCP. Afrika Matematika 26 (2015) 139–151. | DOI | MR | Zbl

G.M. Cho, Large-update interior point algorithm for P * -linear complementarity problem. J. Inequalities Appl. 363 (2014) 1–12. | MR

R.W. Cottle, J.S. Pang and R.E. Stone, The linear complementarity problem. Academic Press, San Deigo (1992). | MR | Zbl

Zs. Darvay, A weighted-path-following method for linear optimization. Studia Univ. Babes-Bolyai, Informatica XLVII (2002). | MR | Zbl

J. Ding and T.Y. Li, An algorithm based on weighted logarithmic barrier functions for linear complementarity problems. Arab. J. Sci. Eng. 15 (1990) 679–685. | MR | Zbl

T. Illés and M. Nagy, The Mizuno-Todd-Ye predictor-corrector algorithm for sufficient matrix linear complementarity problem. Oper. Res. report (2004). | MR | Zbl

B. Jansen, C. Roos, T. Terlaky and J.Ph. Vial, Primal-dual target-following algorithms for linear programming. Ann. Oper. Res. 62 (1997) 197–231. | DOI | MR | Zbl

H. Mansouri and H. Asadi, A quadratically convergent O((1+κ)n) interior point algorithm for the P * (κ)- matrix horizontal linear complementarity problem. J. Sci. Islamic Republic of Iran 23 (2012) 237–244. | MR

I. Pólik, Novel analysis of interior point methods for linear optimization problems [in Hungarian]. Msc thesis, Eotvos Lorand University of Sciences. Faculty of Natural Sciences, Budapest (2002).

C. Roos, T. Terlaky and J. Ph. Vial, Theory and Algorithms for Linear optimization. An Interior Point Approach. John Wiley and Sons, Chichester (1997). | MR | Zbl

G.Q. Wang and Y.Q. Bai, Polynomial interior-point algorithms for P * (κ)-horizontal linear complementarity problem. J. Comput. Appl. Math. 233 (2009) 249–263. | MR | Zbl

G.Q. Wang, Y.J. Yue and X.Z. Cai, A weighted path-following method for monotone horizontal linear complementarity problem. Fuzzy Inform. Eng. 54 (2009) 479–487. | DOI | Zbl

G.Q. Wang, X.J. Fan, D.T. Zhu and D.Z. Wang, New complexity analysis of a full-Newton step feasible interior point algorithm for P * (κ)-LCP. Optim. Lett. 9 (2015) 1105–1119. | DOI | MR | Zbl

G.Q. Wang, C.J. Yu and K.L. Teo, A full-Newton step feasible interior-point algorithm for P * (κ)-linear complementarity problem. J. Global Optim. 59 (2014) 81–99. | DOI | MR | Zbl

S.J. Wright, Primal-dual interior point methods. Copyright by SIAM (1997). | MR | Zbl

Cité par Sources :