The Fermat−Weber problem is a classical location problem that has the Weiszfeld algorithm as its main iterative solution method. This article presents a geometric interpretation of its local convergence for the particular case of three points, with the solution constrained to be an interior point, which is fundamental to the present geometric interpretation. This constraint, on the other hand, implies that the weights associated to each point must obey triangle inequalities. The eigenvalues analysis is developed considering that all weights have the same value, which simplifies calculation and explanation, but the generalization of this analysis is straightforward, as commented in the text. Step-size scaling is also considered for accelerating the convergence rate. The accompanying eigenvalues analysis determines step-size multiplier ranges that ensure convergence. Moreover, the eigenvalues depend on a parameter that is computed based on the sample points configuration.
Accepté le :
DOI : 10.1051/ro/2015022
Mots-clés : Fermat−Weber problem, location problem, Weiszfeld algorithm, local convergence
@article{RO_2016__50_1_157_0, author = {Venceslau, Helder Manoel and Karam Venceslau, Marilis Bahr and Xavier, Adilson Elias and Maculan, Nelson}, title = {A geometric perspective of the {Weiszfeld} algorithm for solving the {Fermat\ensuremath{-}Weber} problem}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {157--173}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ro/2015022}, zbl = {1333.90076}, mrnumber = {3460669}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2015022/} }
TY - JOUR AU - Venceslau, Helder Manoel AU - Karam Venceslau, Marilis Bahr AU - Xavier, Adilson Elias AU - Maculan, Nelson TI - A geometric perspective of the Weiszfeld algorithm for solving the Fermat−Weber problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2016 SP - 157 EP - 173 VL - 50 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2015022/ DO - 10.1051/ro/2015022 LA - en ID - RO_2016__50_1_157_0 ER -
%0 Journal Article %A Venceslau, Helder Manoel %A Karam Venceslau, Marilis Bahr %A Xavier, Adilson Elias %A Maculan, Nelson %T A geometric perspective of the Weiszfeld algorithm for solving the Fermat−Weber problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 2016 %P 157-173 %V 50 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2015022/ %R 10.1051/ro/2015022 %G en %F RO_2016__50_1_157_0
Venceslau, Helder Manoel; Karam Venceslau, Marilis Bahr; Xavier, Adilson Elias; Maculan, Nelson. A geometric perspective of the Weiszfeld algorithm for solving the Fermat−Weber problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 50 (2016) no. 1, pp. 157-173. doi : 10.1051/ro/2015022. http://archive.numdam.org/articles/10.1051/ro/2015022/
The Fermat−Weber location problem revisited. Math. Program. Ser. A 71 (1995) 71–76. | DOI | MR | Zbl
,Further notes on convergence of the Weiszfeld algorithm. Yugoslav J. Oper. Res. 13 (2003) 199–206. | DOI | MR | Zbl
,Accelerating convergence in the Fermat−Weber location problem. Oper. Res. Lett. 22 (1998) 151–157. | DOI | MR | Zbl
, and ,S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, Cambridge (2004). | MR | Zbl
Location-allocation problems. Oper. Res. 11 (1963) 331–343. | DOI | MR | Zbl
,The Weber problem revisited. Comput. Math. Appl. 7 (1981) 225–234. | DOI | MR | Zbl
and ,Z. Drezner, Facility Location: A Survey of Applications and Methods. Springer Ser. Oper. Res. Springer-Verlag, New York (1995). | MR | Zbl
Z Drezner and H.W. Hamacher, Facility Location: Applications and Theory. Springer, Berlin (2004). | MR | Zbl
J.B. Hiriart-Urruty and C. Lemarechal, Fundamentals of Convex Analysis. Springer, Berlin (2001). | MR | Zbl
The convergence of the Weiszfeld algorithm. Comput. Math. Appl. 40 (2000) 443–451. | DOI | MR | Zbl
and ,D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming, third edn. Springer, New York (2008). | MR | Zbl
Locational analysis: highlights of growth to maturity. J. Oper.Res. Soc. 60 (2009) 140–148. | DOI | Zbl
, and ,Sur le point par lequel la somme des distances de n points donnés est minimum. Tohoku Math. J. 43 (1937) 355–386. | JFM | Zbl
,The Weber problem: history and perspectives. Location Sci. 1 (1993) 5–23. | Zbl
,Cité par Sources :