Convex backorders of a rationing inventory policy with two different demand classes
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 2, pp. 359-373.

We study the constant critical level policy for fast-moving items of an inventory system facing random demands from two customer classes (high and low priority). We consider a continuous review (Q,r,C) policy with continuously distributed demands. Using the properties of the nondecreasing stationary stochastic demand and the threshold clearing mechanism we formulate a convex cost minimization problem to determine the optimal parameters of the critical level policy, which can be optimally solved through KKT conditions. For instances we tested, computational results show that the critical level policy induce a benefit on average 5.9% and 33.5% against the round-up and separate stock policies respectively.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2016029
Classification : 90B05
Mots-clés : Inventory system, critical level policy, shortage penalty cost, fast moving items, two demand classes
Escalona, Pablo 1 ; Ordóñez, Fernando 2 ; Iturrieta, Edgard 1

1 Department of Industrial Engineering, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
2 Department of Industrial Engineering, Universidad de Chile, República 701, Santiago, Chile
@article{RO_2017__51_2_359_0,
     author = {Escalona, Pablo and Ord\'o\~nez, Fernando and Iturrieta, Edgard},
     title = {Convex backorders of a rationing inventory policy with two different demand classes},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {359--373},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/ro/2016029},
     mrnumber = {3657429},
     zbl = {1365.90013},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2016029/}
}
TY  - JOUR
AU  - Escalona, Pablo
AU  - Ordóñez, Fernando
AU  - Iturrieta, Edgard
TI  - Convex backorders of a rationing inventory policy with two different demand classes
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 359
EP  - 373
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2016029/
DO  - 10.1051/ro/2016029
LA  - en
ID  - RO_2017__51_2_359_0
ER  - 
%0 Journal Article
%A Escalona, Pablo
%A Ordóñez, Fernando
%A Iturrieta, Edgard
%T Convex backorders of a rationing inventory policy with two different demand classes
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 359-373
%V 51
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2016029/
%R 10.1051/ro/2016029
%G en
%F RO_2017__51_2_359_0
Escalona, Pablo; Ordóñez, Fernando; Iturrieta, Edgard. Convex backorders of a rationing inventory policy with two different demand classes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 2, pp. 359-373. doi : 10.1051/ro/2016029. http://archive.numdam.org/articles/10.1051/ro/2016029/

H. Arslan, S.C. Graves and T. Roemer, A single-product inventory model for multiple demand classes. Manage. Sci. 53 (2007) 1486–1500. | DOI | Zbl

S. Axsäter, Vol. 90 of Inventory control. Springer (2007). | Zbl

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press (2004). | MR | Zbl

R. Dekker, R.M. Hill, M.J. Kleijn and R.H. Teunter, On the (s-1,s) lost sales inventory model with priority demand classes. Nav. Res. Logistics 49 (2002) 593–610. | DOI | MR | Zbl

V. Deshpande, M.A. Cohen and K. Donohue, A threshold inventory rationing policy for service-differentiated demand classes. Manage. Sci. 49 (2003) 683–703. | DOI | Zbl

P. Escalona, F. Ordóñez and V. Marianov, Joint location-inventory problem with differentiated service levels using critical level policy. Transportation Research Part E 83 (2015) 141–157. | DOI

P. Escalona and F. Ordóñez, Critical level rationing in inventory systems with continuously distributed demand.Working paper (2015).

M. Fadiloglu and O. Bulut, A dynamic rationing for continuous-review inventory systems. Eur. J. Oper. Res. 202 (2010) 675–685. | DOI | Zbl

M. Kleijn and R. Dekker, An overview of inventory systems with several demand classes. In New Trends in Distribution Logistics, edited by M.G. Speranza and P. Stähly. Vol. 480 of Lect. Notes Econ. Math. Syst. Springer Berlin Heidelberg (1999) 253–265. | Zbl

P. Melchiors, R. Dekker and M. Kleijn, Inventory rationing in an (s,q) inventory model with lost sales and two demand classes. J. Oper. Res. Soc. 51 (2000) 111–122. | DOI | Zbl

K.T. Möllering and U.W. Thonemann, An optimal constant level rationing policy under service level constraints. OR Spectrum 32 (2010) 319–341. | DOI | MR | Zbl

S. Nahmias and W.S. Demmy, Operating characteristics of an inventory system with rationing. Manage. Sci. 27 (1981) 1236–1245. | DOI | Zbl

R. Peterson and E.A. Silver, Decision systems for inventory management and production planning. Wiley New York (1979).

K. Ramaekers and G.K. Janssens, On the choice of a demand distribution for inventory management models. Eur. J. Ind. Eng. 2 (2008) 479–491. | DOI

K.P. Sapna Isotupa, An (s,q) markovian inventory system with lost sales and two demand classes. Math. Comput. Model. 43 (2006) 687–694. | DOI | MR | Zbl

R. Serfozo and S. Stidham, Semi-stationary clearing processes. Stochastic Processes Appl. 6 (1978) 165–178. | DOI | MR | Zbl

R.H. Teunter and W.K.K. Haneveld, Dynamic inventory rationing strategies for inventory systems with two demand classes, poisson demand and backordering. Eur. J. Oper. Res. 190 (2008) 156–178. | DOI | Zbl

D. Wang, O. Tang and J. Huo, A heuristic for rationing inventory in two demand classes with backlog costs and a service constraint. Comput. Oper. Res. 40 (2013) 2826–2835. | DOI | MR | Zbl

Y. Wang, S. Zhang and L. Sun, Anticipated rationing policy for two demand classes under service level constraints. Comput. Ind. Eng. 23 (2013) 1200–1212.

Y.-S. Zheng, On properties of stochastic inventory systems. Manage. Sci. 38 (1992) 87–103. | DOI | Zbl

P. Zipkin, Inventory service-level measures: convexity and approximation. Manage. Sci. 32 (1986) 975–981. | DOI | MR | Zbl

Cité par Sources :