Unit commitment under uncertainty in AC transmission systems via risk averse semidefinite stochastic Programs
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 2, pp. 391-416.

This paper addresses unit commitment under uncertainty of load and power infeed from renewables in alternating current (AC) power systems. Beside traditional unit-commitment constraints, the physics of power flow are included. To gain globally optimal solutions a recent semidefinite programming approach is used, which leads us to risk averse two-stage stochastic mixed integer semidefinite programs for which a decomposition algorithm is presented.

Reçu le :
Accepté le :
DOI : 10.1051/ro/2016031
Classification : 90C15, 90C35, 90C22
Mots-clés : Stochastic programming, semidefinite programming, AC power flow
Schultz, Rüdiger 1 ; Wollenberg, Tobias 1

1 Department of Mathematics, University of Duisburg-Essen, Thea-Leymann-Straße 9, 45127 Essen, Germany
@article{RO_2017__51_2_391_0,
     author = {Schultz, R\"udiger and Wollenberg, Tobias},
     title = {Unit commitment under uncertainty in {AC} transmission systems via risk averse semidefinite stochastic {Programs}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {391--416},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {2},
     year = {2017},
     doi = {10.1051/ro/2016031},
     mrnumber = {3657431},
     zbl = {1365.90180},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2016031/}
}
TY  - JOUR
AU  - Schultz, Rüdiger
AU  - Wollenberg, Tobias
TI  - Unit commitment under uncertainty in AC transmission systems via risk averse semidefinite stochastic Programs
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 391
EP  - 416
VL  - 51
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2016031/
DO  - 10.1051/ro/2016031
LA  - en
ID  - RO_2017__51_2_391_0
ER  - 
%0 Journal Article
%A Schultz, Rüdiger
%A Wollenberg, Tobias
%T Unit commitment under uncertainty in AC transmission systems via risk averse semidefinite stochastic Programs
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 391-416
%V 51
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2016031/
%R 10.1051/ro/2016031
%G en
%F RO_2017__51_2_391_0
Schultz, Rüdiger; Wollenberg, Tobias. Unit commitment under uncertainty in AC transmission systems via risk averse semidefinite stochastic Programs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 2, pp. 391-416. doi : 10.1051/ro/2016031. http://archive.numdam.org/articles/10.1051/ro/2016031/

N. Amjady and M.R. Ansari, Hydrothermal unit commitment with ac constraints by a new solution method based on benders decomposition. Energy Convers. Manage. 65 (2013) 57–65. | DOI

M.F. Anjos and J.B. Lasserre, Handbook on Semidefinite, Conic Polynomial Optimization. Vol. 166 of Internat. Ser. Oper. Res. Management Sci. Springer (2012). | MR | Zbl

K.A. Ariyawansa and Y. Zhu, Stochastic semidefinite programming: A new paradigm for stochastic optimization. 4OR: A Quart. J. Oper. Res. 4 (2004) 239–253. | DOI | MR | Zbl

X. Bai, H. Wei, K. Fujisawa and Y. Wang, Semidefinite programming for optimal power flow problems. Int. J. Electric Power Energy Syst. 30 (2008) 383–392. | DOI

D. Bienstock and S. Mattia, Using mixed-integer programming to solve power grid blackout problems. Discrete Optim. 4 (2007) 115–141. | DOI | MR | Zbl

J.R. Birge and F. Louveaux, Introduction to Stochastic Programming. Internat. Series in Operations Research and Financial Engineering, 2nd edition. Springer (2011). | MR | Zbl

S. Bose, D.F Gayme, S. Low and K.M.i Chandy, Optimal power flow over tree networks. In Communication, Control and Computing (Allerton), 2011 49th Annual Allerton Conference on. IEEE (2011) 1342–1348.

W.A. Bukhsh, A. Grothey, K. Mckinnon and P. Trodden, Local solutions of optimal power flow. IEEE Trans. Power Syst. 28 (2013) 4780–4788. | DOI

C.C. Carøe and R. Schultz, A two-stage stochastic program for unit commitment under uncertainty in a hydro-thermal power system. Konrad-Zuse-Zentrum, Berlin (1998), ZIB-Preprint SC 98-11.

C.C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24 (1999) 37–45. | DOI | MR | Zbl

J. Carpentier, Contribution to the economic dispatch problem. Bull. Soc. Franc. Elect. 3 (1962) 431–447.

C. Coffrin, H.L. Hijazi and P. Van Hentenryck, The qc relaxation: Theoretical and computational results on optimal power flow. Preprint (2015). | arXiv

M. Farivar, C.R. Clarke, S.H. Low and K.M. Chandy, Inverter var control for distribution systems with renewables. In Smart Grid Communications (SmartGridComm), 2011 IEEE International Conference on. IEEE (2011) 457–462.

S. Frank and S. Rebennack, A primer on optimal power flow: Theory, formulation, and practical examples. Working Paper, Colorado School of Mines (2012).

S. Frank, I. Steponavice and S. Rebennack, A primer on optimal power flow: A bibliographic survey (i) – formulations and deterministic methods. Energy Systems 3 (2012) 221–258. | DOI

S. Frank, I. Steponavice and S. Rebennack, A primer on optimal power flow: A bibliographic survey (ii) – non-deterministic and hybrid methods. Energy Systems 3 (2012) 259–289. | DOI

R. Gollmer, M.P. Nowak, W. Römisch and R. Schultz, Unit commitment in power generation - a basic model and some extensions. Ann. Oper. Res. 96 (2000) 167–189. | DOI | Zbl

T. Haukaas, Probablistic models, methods, and decisions in earthquake engineering. In Safety, Reliability, Risk and Life-Cycle Performance of Structures & Infrastructures, edited by G. Deodatis, B.R. Ellingwood and D.M. Frangopol. CRC Press (2014) 47–66.

H. Heitsch and W. Römisch, Scenario tree modeling for multistage stochastic programs. Math. Program. 118 (2009) 371–406. | DOI | MR | Zbl

C. Helmberg, Semidefinite programming for combinatorial optimization. Konrad-Zuse-Zentrum, Berlin (2000), ZIB-Report ZR 00-34.

H. Hijazi, C. Coffrin and P. Van Hentenryck, Convex quadratic relaxations of mixed-integer nonlinear programs in power systems, Tech. rep. NICTA, Canberra, ACT Australia (2013).

R. Jabr et al., Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 21 (2006) 1458–1459. | DOI

S. Kuhn, Betriebsoptimierung von elektrischen Energieerzeugungsanlagen und Übertragungssystemen bei unvollständiger Information. Ph.D. thesis, University of Duisburg-Essen (2011).

J. Lavaei and S.H. Low, Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27 (2011) 92–107. | DOI

C. Lemaréchal, Lagrangian relaxation. In Computational Combinatorial Optimization, edited by M. Jünger and D. Naddef. Vol. 2241 of Lect. Notes Comput. Sci. Springer (2001) 112–156. | MR | Zbl

B.C. Lesieutre, D.K. Molzahn, A.R. Borden and C.L. DeMarco, Examining the limits of the application of semidefinite programming to power flow problems. In 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2011) 1492–1499.

X. Liu, S. Kçüükyavuz and J. Luedtke, Decomposition algorithms for two-stage chance-constrained programs. Math. Program. 157 (2016) 219–243. | DOI | MR | Zbl

M. Lubin, K. Martin, C. Petra and B. Sandikçi, On parallelizing dual decomposition in stochastic integer programming. Oper. Res. Lett. 41 (2013) 252–258. | DOI | MR | Zbl

R. Madani, M. Asharphijuo and J. Lavaei, SDP Solver of Optimal Power Flow User’s Manual (2014). Available at http://www.columbia.edu/˜rm3122/OPF˙Solver˙Guide.pdf.

S. Mehrotra and M.G. Özevin, Decomposition-based interior point methods for two-stage stochastic semidefinite programming. SIAM J. Optim. 18 (2007) 206–222. | DOI | MR | Zbl

S. Mehrotra and M.G. Özevin, On the implementation of interior point decomposition algorithms for two-stage stochastic conic programs. SIAM J. Optim. 19 (2009) 1846–1880. | DOI | MR | Zbl

D. Mehta, D.K Molzahn and K. Turitsyn, Recent advances in computational methods for the power flow equations. Preprint (2015). | arXiv

D.K Molzahn, Application of Semidefinite Optimization Techniques to Problems in Electric Power Systems. Ph. D. thesis, University of Wisconsin–Madison (2013).

D.K Molzahn, J.T. Holzer, B.C. Lesieutre and C.L. Demarco, Implementation of a large-scale optimal power flow solver based on semidefinite programming. IEEE Trans. Power Syst. 28 (2013) 3987–3998. | DOI

D.K. Molzahn, B.C. Lesieutre and C.L. Demarco, A sufficient condition for global optimality of solutions to the optimal power flow problem. IEEE Trans. Power Syst. 29 (2014) 978–979. | DOI

J.A. Momoh, R. Adapa and M.E. El-Hawary, A review of selected optimal power flow literature to 1993 Part i: Nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14 (1999) 96–104. | DOI

J.A. Momoh, R. Adapa and M.E. El-Hawary, A review of selected optimal power flow literature to 1993 Part ii: Nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14 (1999) 105–111. | DOI

A. Müller and D. Stoyan, Comparison Methods for Stochastic Models and Risks. John Wiley & Sons, INC (2002). | MR | Zbl

G.C. Pflug and W. Römisch, Modeling, Measuring and Managing Risk. World Scientific Publishing (2007). | MR | Zbl

A. Ruszczyński, A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35 (1986) 309–333. | DOI | MR | Zbl

A. Ruszczyński and A. Shapiro, Stochastic Programming. Vol. 10 of Handbooks Oper. Res. Manage. Sci. Elsevier (2003). | MR | Zbl

P. Sánchez-Martin and A. Ramos, Modeling transmission ohmic losses in a stochastic bulk production cost model. Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid (1997).

P. Sánchez-Martin, A. Ramos and J.F. Alonso, Probablistic midterm transmission planning in a liberalized market. IEEE Trans. Power Syst. 20 (2005) 2135–2142. | DOI

R. Schultz and S. Tiedemann, Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse. SIAM J. Optim. 14 (2003) 115–138. | DOI | MR | Zbl

A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming, Modeling and Theory. Society for Industrial and Applied Mathematics (2009). | MR | Zbl

S. Sojoudi and J. Lavaei, Physics of power networks makes hard optimization problems easy to solve. In Power and Energy Society General Meeting, 2012 IEEE. IEEE (2012) 1–8.

UWEE University of Washington Electrical Engineering, Power Systems Test Case Archive (2014). Available at http://www.ee.washington.edu/research/pstca/.

H. Wolkowitz, R. Saigal and L. Vandenberghe, eds. Handbook of Semidefinite Progamming: Theory, Algorithms and Applications. Vol. 27 of Int. Ser. Oper. Res. Manage. Sci. Kluwer Academic Publishers (2000). | MR | Zbl

B. Zhang and D. Tse, Geometry of feasible injection region of power networks. In Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on. IEEE (201) 1508–15151.

G. Zhao, A log-barrier method with benders decomposition for solving two-stage stochastic linear programs. Math. Program. 90 (2001) 507–536. | DOI | MR | Zbl

J. Zhu, Optimization of Power System Operation. IEEE Press Series on Power Engineering. John Wiley & Sons, INC. (2009).

Cité par Sources :