Approximate Lagrangian duality and saddle point optimality in set optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 3, pp. 819-831.

In this paper, we establish approximate Lagrangian multiplier rule, Lagrangian duality and saddle point optimality for set optimization problem where the solutions are defined using set relations introduced by Kuroiwa (Kuroiwa D., The natural criteria in set-valued optimization. Su̅rikaisekikenkyu̅sho Ko̅kyu̅roku 1031 (1998) 85–90).

Reçu le :
Accepté le :
DOI : 10.1051/ro/2016068
Classification : 49J53, 90C46, 90C26
Mots-clés : Set optimization, approximate solutions, Lagrangian multiplier rule, Lagrangian duality, saddle point optimality
Lalitha, C. S. 1 ; Dhingra, Mansi 2

1 Department of Mathematics, University of Delhi South Campus, Benito Jaurez Road, New Delhi 110021, India.
2 Department of Mathematics, University of Delhi, Delhi 110007, India.
@article{RO_2017__51_3_819_0,
     author = {Lalitha, C. S. and Dhingra, Mansi},
     title = {Approximate {Lagrangian} duality and saddle point optimality in set optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {819--831},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {3},
     year = {2017},
     doi = {10.1051/ro/2016068},
     mrnumber = {3880527},
     zbl = {1393.49013},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2016068/}
}
TY  - JOUR
AU  - Lalitha, C. S.
AU  - Dhingra, Mansi
TI  - Approximate Lagrangian duality and saddle point optimality in set optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2017
SP  - 819
EP  - 831
VL  - 51
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2016068/
DO  - 10.1051/ro/2016068
LA  - en
ID  - RO_2017__51_3_819_0
ER  - 
%0 Journal Article
%A Lalitha, C. S.
%A Dhingra, Mansi
%T Approximate Lagrangian duality and saddle point optimality in set optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2017
%P 819-831
%V 51
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2016068/
%R 10.1051/ro/2016068
%G en
%F RO_2017__51_3_819_0
Lalitha, C. S.; Dhingra, Mansi. Approximate Lagrangian duality and saddle point optimality in set optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 3, pp. 819-831. doi : 10.1051/ro/2016068. http://archive.numdam.org/articles/10.1051/ro/2016068/

H.W. Corley, Existence and Lagrangian duality for maximizations of set-valued functions. J. Optim. Theory Appl. 54 (1987) 489–501. | DOI | MR | Zbl

H.W. Corley, Optimality conditions for maximizations of set-valued functions. J. Optim. Theory Appl. 58 (1988) 1–10. | DOI | MR | Zbl

J. Dutta and V. Vetrivel, On approximate minima in vector optimization. Numer. Funct. Anal. Optim. 22 (2001) 845–859. | DOI | MR | Zbl

O. Güler, Foundations of optimization. Vol. 258 of Graduate Texts in Mathematics. Springer, New York (2010). | MR | Zbl

A.H. Hamel and A. Löhne, Lagrange duality in set optimization. J. Optim. Theory Appl. 161 (2014) 368–397. | DOI | MR | Zbl

E. Hernández and L. Rodríguez-Marín, Lagrangian duality in set-valued optimization. J. Optim. Theory Appl. 134 (2007) 119–134. | DOI | MR | Zbl

E. Hernández and L. Rodríguez-Marín, Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325 (2007) 1–18. | DOI | MR | Zbl

E. Hernández, A. Löhne, L. Rodríguez-Marín and C. Tammer, Lagrange duality, stability and subdifferentials in vector optimization. Optimization 62 (2013) 415–428. | DOI | MR | Zbl

D. Kuroiwa, Existence theorems of set optimization with set-valued maps. J. Inf. Optim. Sci. 24 (2003) 73–84. | MR | Zbl

D. Kuroiwa, On duality of set-valued optimization, Research on nonlinear analysis and convex analysis (Japanese) (Kyoto, 1998). Su ¯rikaisekikenkyu ¯sho Ko ¯kyu ¯roku 1071 (1998) 12–16. | MR | Zbl

D. Kuroiwa, On set-valued optimization. Nonlin. Anal. 47 (2001) 1395–1400. | DOI | MR | Zbl

D. Kuroiwa, Some duality theorems of set-valued optimization with natural criteria, In: Proc. of the International conference on nonlinear analysis and convex analysis. World Scientific, River Edge, NJ (1999) 221–228. | MR | Zbl

D. Kuroiwa, The natural criteria in set-valued optimization. Su ¯rikaisekikenkyu ¯sho Ko ¯kyu ¯roku 1031 (1998) 85–90. | MR | Zbl

S.S. Kutateladze, Convex ε-programming. Sov. Math. Dokl. 20 (1979) 391–393. | Zbl

Z.F. Li and G.Y. Chen, Lagrangian multipliers, saddle points and duality in vector optimization of set-valued maps. J. Math. Anal. Appl. 215 (1997) 297–316. | DOI | MR | Zbl

A. Löhne, Vector Optimization with Infimum and Supremum. Springer-Verlag, Berlin (2011). | Zbl

X.-J. Long and J.-W. Peng, Lagrangian duality for vector optimization problems with set-valued mappings. Taiwanese J. Math. 17 (2013) 287–297. | MR | Zbl

D.T. Luc, Theory of Vector Optimization. Vol. 319 of Lecture notes in Econom. and Math. Systems. Springer-Verlag, Berlin (1989). | MR | Zbl

W.D. Rong and Y.N. Wu, ε-Weak minimal solutions of vector optimization problems with set-valued maps. J. Optim. Theory Appl. 106 (2000) 569–579. | DOI | MR | Zbl

W. Song, Duality for vector optimization of set-valued functions. J. Math. Anal. Appl. 201 (1996) 212–225. | DOI | MR | Zbl

W. Song, Lagrangian duality for minimization of nonconvex multifunctions. J. Optim. Theory Appl. 93 (1997) 167–182. | DOI | MR | Zbl

I. Vàlyi, Approximate saddle-point theorems in vector optimization. J. Optim. Theory Appl. 55 (1987) 435–448. | DOI | MR | Zbl

X.M. Yang, D. Li and S.Y. Wang, Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110 (2001) 413–427. | DOI | MR | Zbl

Cité par Sources :