A graph of even order is -extendable if it is of order at least , contains a matching of size , and if every such matching is contained in a perfect matching of . In this paper, we study the extendability of lexicographic products of graphs. We characterize graphs and such that their lexicographic product is not -extendable. We also provide several conditions on the graphs and under which their lexicographic product is -extendable.
Accepté le :
DOI : 10.1051/ro/2016072
Mots-clés : ℓ-extendable graphs, lexicographic product, Tutte’s Theorem
@article{RO_2017__51_3_857_0, author = {Chiarelli, Nina and Dibek, Cemil and Ekim, T{\i}naz and G\"oz\"upek, Didem and Miklavi\v{c}, \v{S}tefko}, title = {On matching extendability of lexicographic products}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {857--873}, publisher = {EDP-Sciences}, volume = {51}, number = {3}, year = {2017}, doi = {10.1051/ro/2016072}, zbl = {1387.05193}, mrnumber = {3880529}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2016072/} }
TY - JOUR AU - Chiarelli, Nina AU - Dibek, Cemil AU - Ekim, Tınaz AU - Gözüpek, Didem AU - Miklavič, Štefko TI - On matching extendability of lexicographic products JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2017 SP - 857 EP - 873 VL - 51 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2016072/ DO - 10.1051/ro/2016072 LA - en ID - RO_2017__51_3_857_0 ER -
%0 Journal Article %A Chiarelli, Nina %A Dibek, Cemil %A Ekim, Tınaz %A Gözüpek, Didem %A Miklavič, Štefko %T On matching extendability of lexicographic products %J RAIRO - Operations Research - Recherche Opérationnelle %D 2017 %P 857-873 %V 51 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2016072/ %R 10.1051/ro/2016072 %G en %F RO_2017__51_3_857_0
Chiarelli, Nina; Dibek, Cemil; Ekim, Tınaz; Gözüpek, Didem; Miklavič, Štefko. On matching extendability of lexicographic products. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 3, pp. 857-873. doi : 10.1051/ro/2016072. http://archive.numdam.org/articles/10.1051/ro/2016072/
Lexicographic product of extendable graphs. Bull. Malays. Math. Sci. Soc. 33 (2010) 197–204. | MR | Zbl
, , and ,On 2-extendable Abelian Cayley graphs. Discrete Math. 146 (1995) 19–32. | DOI | MR | Zbl
, and ,On the strong product of a -extendable and an -extendable graph. Graphs Combin. 17 (2001) 245–253. | DOI | MR | Zbl
and ,The Cartesian product of a -extendable and -extendable graph is -extendable. Discrete Math. 101 (1992) 87–96. | DOI | MR | Zbl
and ,W. Imrich and S. Klavžar, Product Graphs, structure and recognition. John Wiley & Sons, Inc., New York (2000). | MR | Zbl
On defect- matchings in graphs. Discrete Math. 13 (1975) 41–54. | DOI | MR | Zbl
, and ,Matching extensions and products of graphs. Ann. Discrete Math. 55 (1993) 191–200. | DOI | MR | Zbl
and ,On -extendable graphs. Discrete Math. 31 (1980) 201–210. | DOI | MR | Zbl
.The factorization of linear graphs. J. London Math. Soc. 22 (1947) 107–111. | DOI | MR | Zbl
,Q.R. Yu and G. Liu, Graph Factors and Matching Extensions. Springer-Verlag, Berlin (2010). | MR | Zbl
Cité par Sources :